• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Shock compaction and synthesis of titanium-silicon-carbide (Ti₃SiC₂)

Jordan, Jennifer Lynn 08 1900 (has links)
No description available.
22

Development of aluminium-based multi-functional materials by laser surface alloying.

Popoola, Abimbola Patricia Idowu. January 2011 (has links)
D. Tech. Chemical and Metallurgica Engineering. / Discusses the development highly corrosion resistant multi-functional materials for automobile applications by using laser surface alloying of aluminium substrate with a combination of metallic and ceramic powdery materials.
23

Desenvolvimento de antenas de microfita e antenas DRA Broadband

Oliveira, Elder Eldervitch Carneiro de 02 September 2011 (has links)
Made available in DSpace on 2014-12-17T14:54:59Z (GMT). No. of bitstreams: 1 ElderECO_TESE_Capa_ate_pag86.pdf: 3877192 bytes, checksum: d9b068e5eaa76a69d5a1fa1f245dbc5d (MD5) Previous issue date: 2011-09-02 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated / A busca por dispositivos cada vez menores e sem perda de desempenho vem sendo cada dia mais investigada pelos pesquisadores da ?rea envolvendo eletromagnetismo apli- cado. Antenas utilizando materiais cer?micos com uma alta constante diel?trica, sejam elas atuando como substrato do elemento patch radiante ou como sendo o pr?prio ele- mento radiante est?o em evid?ncia nas pesquisas atuais, isso devido ?s in?meras vantagens que apresentam, tais como: baixo perfil, capacidade de redu??o de suas dimens?es (quando comparado a outros dispositivos), alta efici?ncia de radia??o, adequabilidade a faixa de micro-ondas e/ou ondas milim?tricas, baixo coeficiente de temperatura e baixo custo. A raz?o para essa alta efici?ncia ? que as perdas diel?tricas das cer?micas s?o muito baixas, quando comparadas ?s dos materiais comercialmente usados em placas de circuito impresso, tais como: fibra de vidro e fenolite. Essas caracter?sticas tornam os dispositivos cer?micos adequados para operar na faixa de micro-ondas. Aliando o projeto de antenas patch e/ou antenas ressoadoras diel?tricas (DRA) ao uso de certos materiais e ao m?todo de s?ntese desses p?s na fabrica??o dos dispositivos, ? poss?vel escolher um material com uma determinada constante diel?trica para o projeto de uma antena com o tamanho desejado. O objetivo principal deste trabalho consiste no projeto de antenas patches e antenas DRA sob s?ntese de p?s cer?micos (s?ntese por combust?o e por precursores polim?ricos - m?todo Pechini) nanoestruturados para aplica??es na faixa de micro-ondas. O m?todo convencional de mistura de ?xidos tamb?m foi utilizado na obten??o de p?s nanom?tricos para a confec??o das pastilhas e ressoadores diel?tricos. Os dispositivos fabricados e estudados sobre materiais de alta constante diel?trica os tornam bons candidatos ? fabrica??o de dispositivos e circuitos de dimens?es reduzidas quando comparado aos outros dispositivos tradicionais operando na mesma faixa de frequ?ncia. As estruturas analisadas s?o excitadas por tr?s diferentes t?cnicas: i) linha de microfita, ii) acoplamento por abertura e iii) acoplamento indutivo. A efici?ncia dessas t?cnicas de alimenta??o s?o investigadas experimentalmente e comparada com simula??es realizadas pelo Ansoft HFSS, utilizado na an?lise precisa do comportamento eletromagn?tico das antenas atrav?s do m?todo dos elementos finitos (FEM). Nesta tese um estudo bibliogr?fico sobre teoria de antenas de microfita e antenas DRA ? realizado. O mesmo estudo ? realizado a respeito dos materiais e dos m?todos de s?ntese dos p?s cer?micos que s?o utilizados na fabri- ca??o das pastilhas e dos cil?ndros diel?tricos que compor?o os dispositivos investigados. Os meios diel?tricos os quais serviram de suporte na an?lise das antenas patch e/ou DRA s?o analisados atrav?s de simula??es precisas utilizando o m?todo das diferen?as finitas no dom?nio do tempo (FDTD) com base na permissividade el?trica relativa (er) e tangente de perda desses meios (tand). Este trabalho ainda apresenta um estudo em redes neurais artificiais, evidenciando a arquitetura de rede utilizada e suas caracter?sticas, bem como os algoritmos de treinamento que foram usados no treinamento e na modelagem de alguns par?metros associados aos dispositivos investigados
24

Investigations of Solution Combustion Process and their Utilization for Bioceramic Applications

Sherikar, Baburao Neelkantappa January 2014 (has links)
Solution combustion synthesis (SCS) with its origin at IPC department of IISc has been widely practiced for synthesis of oxide materials. It is simple and low cost process, with energy and time savings that can be used to produce homogeneous, high purity, uniformly doped, nano crystalline ceramic powders. The powders characteristics such as crystallite size and surface area are primarily governed by enthalpy, flame temperature of combustion, fuel and fuel to oxidizer ratio ( F/O). In the present work an attempt has been made to investigate the process in order to exercise a control over the phase formation and nature of the product. Initial part of the work deals with the effect of fuel to oxidizer ratio on the powder properties of binary oxides with urea as fuel. The variation of adiabatic flame temperatures are calculated theoretically for different F/O ratios according to thermodynamic concept and correlated with the observed flame temperatures. Difference in the measured flame temperature and theoretical flame temperature in the fuel rich region is explained on the basis of incomplete combustion model. The effect of decomposition temperature difference of fuel and oxidizer, solubility of reactants on exothermicity of combustion reaction taking aluminiumnitrate system for various fuels is investigated. The effect of mixed fuel approach is studied by using the urea-glycine mixed fuel system using aluminium nitrate as oxidizer and employed for successful synthesis of the gamma alumina. Further Compaction behavior of SCS nano ceramic powders is studied by using Universal testing machine and the effect of F/O ratio, on agglomeration strength, aggregation strength of powder is investigated. Very few reports can be found on usage of SCS ceramic powder for biomaterial applications. By using these investigations a pyroxene series Diopside (CaMgSi2O6) silicate material is synthesized by SCS. Effect of different fuels on Diopside (DP) phase formation is investigated. Finally the DP and DP-ZnO composites, made by using Uniaxial hot pressing are investigated for their antibacterial, cytocompatibility properties. Antibacterial activity of E.Coli bacterium of Diopside powders was dose dependent type. Results of the bioactivity investigations shown flattened MC3T3 mouse osteoblast cells and MC C2C12 Myoblast cells and linkage bridges formed between them on Diopside and DP-ZnO surfaces show cyto compatibility and MTT results showed that percentage of ZnO needs to be tailored between 0-10 in order to achieve maximum cytocompatibility coupled with antibacterial property.
25

Polovodičová keramika pro termoelektrické aplikace / Semiconducting ceramics for thermoelectric application

Jebavá, Alžběta January 2015 (has links)
This diploma thesis focuses on the syhnthesis of multicomponent ceramic system based on Ca-(Mn,Co)-O. The thesis is devided in theoretical and experimental part. The theoretical part is describing ceramic materials for thermoelectric application, preparation and synthesis of these materials and their processing. The experimental part is dealing with synthesis of ceramic powder which is processed to the porous ceramics. The properties of prepared porous ceramics are observed.

Page generated in 0.0601 seconds