• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relaxor ferroelectricity in (Pb←xBa←1←-←x)(Mg←1←/←3Nb←2←/←3)O←3 ceramics

Butcher, Steven John January 1989 (has links)
No description available.
2

Dielectric Titanate Ceramics : Contributions From Uncommon Substituents And Microstructural Modifications

Jayanthi, S 10 1900 (has links)
This thesis deals with the investigations on the dielectric properties of polycrystalline ceramics having uncommon substitutions in barium titanate and other related phases of BaTiO3-CaTiO3, MgTiO3-CaTiO3 and MgTiO3-BaTiO3 systems. After presenting a brief introduction on the ceramic materials studied in terms of their crystal structures, electrical properties, nonstoichiometry and microstructural characteristics. The thesis describes the synthesis of the ceramics and the methodology of different techniques utilized in characterizing the samples. Barium calcium titanate was synthesized through novel wet chemical techniques and the dielectric properties of calcium substituted barium titanate do not reveal multi-site occupancy whereas they are predominantly influenced by the A/B cationic ratio. The role of transition metals of the 3d series from vanadium (Z=23) to zinc (Z=30) in modifying the crystallographic phase content, microstructure and the dielectric properties of BaTiO3 ceramics containing 10 at% impurities were studied. All the transition metals brought about the phase conversion to hexagonal BaTiO3, although no systematics could be arrived at relating the hexagonal content to the 3d electronic configuration of the impurities. The relaxor dielectrics arising from the titanate solid solution with uncommon substitution and its interconversion to normal ferroelectrics is studied. The effects of cationic substitutions of iron and niobium for titanium in BaTiO3 pervoskite lattice in crystal symmetry and dielectric properties were investigated. The above dielectric characteristics are comparable in a converse way to those of the well known Pb(Mg1/3Nb2/3)O3-PbTiO3 system wherein the relaxor behaviour occurs within the lower lead titanate compositional limits. The modification in -T characteristics of positive temperature coefficient in resistance (PTCR) by the addition of segregative additives such as B2O3, Al2O3 etc in BaTiO3 and its conversion to grain boundary layer capacitance is studied. The presence of Al-related hole centers at the grain boundary regions resulted in charge redistribution across the modified phase transition temperatures due to symmetry-related vibronic interactions, which result in broad PTCR characteristics extending to higher temperatures. The processing of high permittivity ceramics by the manipulation of microstructural features in semiconducting BaTiO3 is studied wherein the grain boundary layer effect superimposed with the contributions from the barrier layers formed during electroding related to microstructure is proposed to be responsible for the unusual high permittivity in semiconducting BaTiO3. The influence of Mg2+ as a substituent in modifying the crystallographic phase contents, microstructure and the dielectric properties of (Ba1-xMgx)TiO3 ceramics, (x ranging from zero to 1.0 ) is studied. The results point to the dual occupancy of Mg2+ both in A and B sublattice and the role of oxygen vacancy as well as (Ti3+ –VO) defects in stabilization of hexagonal phase to lower temperatures. The microwave dielectrics of the BaMg6Ti6O19 phase formed in the compositional range of x=0.4 to 0.7 was investigated for suitable application in microwave dielectrics. Extensive miscibility between the ilmenite-type MgTiO3 and perovskite-type CaTiO3 over a wide compositional range is brought about by the simultaneous equivalent substitution of Al3+ and La3+. The resulting Mg1-(x+y)CaxLay)(Ti1-yAly)O3 ceramics exhibit improved microwave dielectric properties by way of high permittivity, low TCK and high quality factor. The elemental distribution reveals the complexity in the Mg/Ca distribution and its correlation with the solid state miscibility as well as dielectric properties. Microwave dielectric property of Mg4Al2Ti9O25 which is detected as secondary phase is studied in detail.
3

Investigations Into The Microstructure-Property Correlation In Doped And Undoped Giant Dielectric Constant Material CaCu3Ti4O12

Shri Prakash, B 10 1900 (has links)
High dielectric constant materials are of technological importance as they lead to the miniaturization of the electronic devices. In this context, the observation of anomalously high dielectric constant (>104) in the body-centered cubic perovskite-related (Space group Im3) material Calcium Copper Titanate ((CaCu3Ti4O12)(CCTO)) over wide frequency (100 Hz – 1MHz at RT) and temperature (100 – 600 K at 1 kHz ) ranges has attracted a great deal of attention. However, high dielectric constant in CCTO is not well understood yet, though internal barrier layer capacitor (IBLC) mechanism is widely been accepted. Therefore, the present work has been focused on the preparation and characterization of CCTO ceramic and to have an insight into the origin of high dielectric constant. Influence of calcination temperature, processing conditions, microstructure (and hence grain size), composition, doping etc on the electrical characteristics of CCTO ceramics were investigated. Electrical properties were found to be strongly dependent on these parameters. The dielectric constant in CCTO was observed to be reduced considerably on substituting La+3 on Ca+2 site. The formation temperature of CCTO was lowered substantially (when compared to conventional solid-state reaction route) by adopting molten-salt synthesis. The dielectric loss in CCTO was reduced by incorporating glassy phases at the grain boundary. Potential candidates for the practical applications such as charge storage devices, capacitors etc, with dielectric constant as high as 700 at 300 K was accomplished in a three-phase percolative composite fabricated by incorporating Aluminium particle into CCTO-epoxy composite. Polycrystalline CCTO thin films with dielectric constant as high as ~ 5000 (1 kHz and 400 K) were fabricated on Pt(111)/Ti/SiO2/Si substrates using radio frequency magnetron sputtering. Effect of sintering conditions on the microstructural, ferroelectric and varistor properties of CCTO and LCTO ceramics belonging to the high and low dielectric constant members of ACu3M4O12 family of oxides were investigated in detail and are compared. Ferroelectric-like hysteresis loop (P vs E) and weak pyroelectricity were observed in CCTO and plausible mechanisms for this unusual phenomenon have been proposed.
4

Novel polar dielectrics with the tetragonal tungsten bronze structure

Rotaru, Andrei January 2013 (has links)
There is great interest in the development of new polar dielectric ceramics and multiferroic materials with new and improved properties. A family of tetragonal tungsten bronze (TTB) relaxors of composition Ba₆M³⁺Nb₉O₃₀ (M³⁺ = Ga³⁺, Sc³⁺ and In³⁺, and also their solid solutions) were studied in an attempt to understand their dielectric properties to enable design of novel polar TTB materials. A combination of electrical measurements (dielectric and impedance spectroscopy) and powder diffraction (X-ray and neutron) studies as a function of temperature was employed for characterising the dynamic dipole response in these materials. The effect of B-site doping on fundamental dipolar relaxation parameters were investigated by independently fitting the dielectric permittivity to the Vogel-Fulcher (VF) model, and the dielectric loss to Universal Dielectric Response (UDR) and Arrhenius models. These studies showed an increase in the characteristic dipole freezing temperature (T[subscript(f)]) with increase B-cation radius. Crystallographic data indicated a corresponding maximum in tetragonal strain at T[subscript(f)], consistent with the slowing and eventual freezing of dipoles. In addition, the B1 crystallographic site was shown to be most active in terms of the dipolar response. A more in-depth analysis of the relaxor behaviour of these materials revealed that, with the stepwise increase in the ionic radius of the M³⁺ cation on the B-site within the Sc-In solid solution series, the Vogel-Fulcher curves (lnf vs. T[subscript(m)]) are displaced to higher temperatures, while the degree of relaxor behaviour (frequency dependence) increases. Unfortunately, additional features appear in the dielectric spectroscopy data, dramatically affecting the Vogel-Fulcher fitting parameters. A parametric study of the reproducibility of acquisition and analysis of dielectric data was therefore carried out. The applicability of the Vogel-Fulcher expression to fit dielectric permittivity data was investigated, from the simple unrestricted (“free”) fit to a wider range of imposed values for the VF relaxation parameters that fit with high accuracy the experimental data. The reproducibility of the dielectric data and the relaxation parameters obtained by VF fitting were shown to be highly sensitive to the thermal history of samples and also the conditions during dielectric data acquisition (i.e., heating/cooling rate). In contrast, UDR analysis of the dielectric loss data provided far more reproducible results, and to an extent was able to partially deconvolute the additional relaxation processes present in these materials. The exact nature of these additional relaxations is not yet fully understood. It was concluded application of the Vogel-Fulcher model should be undertaken with great care. The UDR model may represent a feasible alternative to the evaluation of fundamental relaxation parameters, and a step forward towards the understanding of the dielectric processes in tetragonal tungsten bronzes.

Page generated in 0.1839 seconds