• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of cerium and other rare earths on the nodule count, nodularity, nodule size and the matrix of the ductile iron

Amin, Amar S., January 1977 (has links)
Thesis--Wisconsin. / Includes bibliographical references (leaves 76-77).
2

Deviations from Matthiessen's rule in magnesium-cerium alloys.

Petrie, Brian Daniel. January 1969 (has links)
No description available.
3

Phase diagram studies in the Mg-rich corner of the Mg-Ce-In ternary system

Dalgard, Elvi C. January 2007 (has links)
In the present study, dilute alloys in the Mg-rich corner of the Mg-Ce-In ternary system in the composition range 0 to 3% In and 0 to 1.5% Ce were synthesized. Cooling curve analysis was used to determine the liquidus points in order to construct the liquidus surface of the ternary phase diagram in the Mg corner. Energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), and x-ray diffraction (XRD) techniques were used to examine phases present at the compositions studied. A thermal arrest presumed to represent a eutectic transformation was discovered at 580°C. Two new intermetallic compounds, designated tau and theta, were found. Trace silicon present in the alloys was found to concentrate in one of the intermetallic compounds. / To further investigate these compounds, an induction furnace was used to synthesize alloys containing the concentrations of Ce and In seen in electron probe micro-analysis (EPMA) examinations of these compounds. The alloys were examined using the cooling curve technique and XRD, and proved to contain the compounds already observed with some variation in dissolved indium content. In addition, differential scanning calorimetry (DSC) was used to confirm the liquidus and solidus values determined using cooling curve analysis. / A diffusion couple with terminal compositions of pure Ce and a Mg-In alloy was prepared in order to determine the equilibrium phases present in the system between these two compositions at 390°C. EPMA was used to identify the zones obtained, and confirmed the presence of several Mg-Ce compounds with 1 at% dissolved indium, as well as a ternary compound corresponding to the theta compound found in the dilute alloys. / Finally, literature values and experimental data were used to calculate a preliminary ternary phase diagram using FACTSage, in collaboration with the CTRC at Ecole Polytechnique, in order to affirm the validity of the experimentally determined values as well as to project the diagram beyond the studied composition range.
4

Deviations from Matthiessen's rule in magnesium-cerium alloys.

Petrie, Brian Daniel. January 1969 (has links)
No description available.
5

Phase diagram studies in the Mg-rich corner of the Mg-Ce-In ternary system

Dalgard, Elvi C. January 2007 (has links)
No description available.
6

Experimental and Computational Micromechanics of Aluminum Cerium Alloys and Selective Laser Melted 316L Stainless Steel

Lane, Ryan Jeffrey 07 June 2023 (has links)
Over time science has provided us with new materials and fabrication techniques making it possible to design and create more complex engineering components for service. If we are to include these materials in damage tolerant design efforts, engineers need to understand when/where degradation will occur in the engineering component. To do so it is imperative that micromechanical studies be conducted to understand the material behavior of the microstructural features including phases, build pattern features, and microstructural imperfections including cracks of new materials to validate any future modeling efforts. This dissertation will discuss the experimental and computational micromechanics of extruded and cast aluminum cerium alloys and selective laser melted 316L stainless steel. In Chapters 2 and 3, micromechanical experiments and computational efforts are carried out on extruded 52:1 Al-8Ce-10Mg alloy. Using in-situ scanning electron microscopy tensile testing microcracking is observed in Al11Ce3 intermetallic after yield in the bulk alloy. In-situ digital image correlation tests observe the load sharing characteristics between the Al(Mg) matrix and the Al11Ce3 intermetallic before and after microcracking. Finally, that failure process is determined to be coalesce of microvoids leading to ductile damage failure. These results are used to create an experimental-computational framework to develop a crystal plasticity finite element model for extruded Al-8Ce-10Mg alloys. The calibrated model is used to perform multiple simulations evaluate the possible effect changes intermetallic content and grain orientation texture have on the mechanical strength of the alloy. The experimental and computational framework are expandable to other material systems not just Al-Ce alloys. In Chapter 4, in-situ scanning electron microscopy tensile testing is used to investigate how the matrix and intermetallic phases contribute to the failure behavior alloy of cast Al-11Ce- 0.4Mg alloy. The in-situ tests shows that after multiple points of crack nucleation, crack coalescence causes the subsequent failure to occur in the Al(Mg) matrix phase of the alloy, as seen by tortuous behavior. The cause of this crack behavior is determined to be due to the high strength match between the matrix and intermetallic phase, strong metallurgical bond between the two phases, and the size effect created by large eutectic colonies created during casting. The results of the experimental work are used to propose a 3D multiscale computational model of cast Al-Ce alloys. In Chapter 5, micromechanical experiments are carried out on SLM 316L Stainless Steel with four different sets of varied processing parameters. Discontinuous yielding is observed in the lowest energy density sample caused by the strong [110] texture, optimal for dislocation slip, in the loading direction. The in-situ loading experiments are also able to capture the melt pool track deformation and crack formation that leads to the failure of these samples. This highlights the importance of micromechanical experiments for additive manufactured materials. / Doctor of Philosophy / As time has progressed new materials have been discovered that make it possible to design more complex parts for engineering design. To ensure the safety and reliability of these materials, engineers need to understand when/where damage will occur in a design. Micromechanical studies conducted at magnifications higher than human visible range allow engineers to explore where damage in materials initiates which would otherwise not be detected until after failure. The results of these studies can be used to build and test models of these materials. This dissertation will discuss the micromechanical studies of extruded and cast aluminum cerium alloys and selective laser melted 316L stainless steel. In Chapters 2 and 3, micromechanical experiments and computational techniques are performed on extruded Al-Ce alloys. In Chapter 4, the failure behavior of cast Al-Ce alloys is examined in active tension using scanning electron microscopy. Finally, in Chapter 5, selective laser melted 316L stainless steel is studied and the results highlight the importance of micromechanical experiments for the new age of metal 3D printing.
7

Additive Friction Stir Deposition of Al-Ce Alloys for Improved Strength and Ductility

Davis, Devin Fredric 12 1900 (has links)
Additive friction stir deposition (AFSD) is a solid-state additive manufacturing (AM) technique that breaks down large constituent particles into more refined and uniformly disturbed microstructure. AFSD was used to print Al-Ce alloys. Current commercial Al-alloys upon elevated temperatures go through dissolution and coarsening of strengthening precipitates causing mechanical degradation of these alloys. Al-Ce alloys do not have this issue as cerium's low solubility restricts dissolution into the aluminum matrix at elevated temperatures, thus giving great thermal stability to the microstructure. Al-Ce alloys lack solid solubility that affects the solid solution strengthening and precipitation strengthening. Al-Ce alloys have limitation at room temperature as they can only reach a maximum of ~65 MPa yield strength. Elements like magnesium have been added to alloy to enable solid solution strengthening, and scandium to enable precipitation strengthening to improve strength before going through the AFSD process. By adding new elements to the Al-Ce alloys, an increase in the yield strength from ~60 MPa to ~200 MPa was achieved before AFSD. The casted alloys form coarse particles that reach 300 µm in size; resulting in stress concentration that causes material fracture before necking, giving >10% ductility. AFSD breaks down these coarse particles to increase strength and ductility increases. The particles were broken down to >20 µm which increased the ductility to 10%. The results of this research shows that Al-Ce alloys are able to reach commercial aluminum alloy mechanical standards of 400 MPa ultimate tensile strength and 10% ductility at room temperature for aerospace applications.
8

Evolution of Microstructure and Texture during Severe Plastic Deformation of a Magnesium-Cerium Alloy

Sabat, Rama Krushna January 2014 (has links) (PDF)
Magnesium alloys have poor formability at room temperature, due to a limited number of slip systems owing to the hexagonal closed packed structure of magnesium. One possibility to increase the formability of magnesium alloys is to refine the grain size. A fine grain magnesium alloy shows high strength and high ductility at room temperature, hence an improved formability. In addition to grain refinement, the formability of Mg alloys can be improved by controlling crystallographic texture. Severe plastic deformation (SPD) processes namely, equal channel angular pressing (ECAP) and multi-axial forging (MAF) have led to improvement in room temperature mechanical property of magnesium alloys. Further, it has been reported that by adding rare earth elements, room temperature ductility is enhanced to nearly 30%. The increase in property is attributed to crystallographic texture. Many rare earth elements have been added to magnesium alloys and new alloy systems have been developed. Amongst these elements, Ce addition has been shown to enhance the tensile ductility in rolled sheets at room temperature by causing homogeneous deformation. It has been observed that processing of rare-earth containing alloys below 300°C is difficult. Processing at higher temperatures leads to grain growth which ultimately leads to low strength at room temperature. The present thesis is an attempt to combine the effect SPD and rare earth addition, and to examine the overall effect on microstructure and texture, hence on room temperature mechanical properties. In this thesis, Mg-0.2%Ce alloy has been studied with regard to the two SPD processes, namely, ECAP and MAF. The thesis has been divided into six chapters. Chapter 1 is dedicated to introduction and literature review pertaining to different severe plastic deformation processes as applied to different Mg alloys. Chapter 2 includes the details of experimental techniques and characterization procedures, which are commonly employed for the entire work. Chapter 3 addresses the effect of ECAP on the evolution of texture and microstructure in Mg-0.2%Ce alloy. ECAP has been carried out on two different initial microstructure and texture in the starting condition, namely forged and extruded. ECAP has been successfully carried out for the forged billets at 250°C while cracks get developed in the extruded billet when ECAP was done at 250°C. The difference in the deformation behaviour of the two alloys has been explained on the basis of the crystallographic texture of the initial materials. The microstructure of the ECAP materials indicates the occurrence of recrystallization. The recrystallization mechanism is identified as “continuous dynamic recovery and recrystallization” (CDRR) and is characterized by a rotation of the deformed grains by ~30⁰ along c-axis. The yield strengths and ductility of the two ECAP materials have been found quite close. However, there is a difference in the yield strength as well as ductility values when the materials were tested under compression. The extruded billet has the tension compression asymmetry ~1.7 while the forged material has the asymmetry as ~2.2. After ECAP, the yield asymmetry reduces to ~1 for initially extruded billet, while for the initially forged billet the yield asymmetry value reduces to ~1.9. In chapter 4, the evolution of microstructure and texture was examined using another severe plastic deformation technique, namely multi axial forging (MAF). In this process, the material was plastically deformed by plane strain compression subsequently along all three axes. In this case also two different initial microstructures and texture were studied, namely the material in as cast condition and the extruded material. The choice of initial materials in this case was done in order to examine the effect of different initial grain size in addition to different textures. By this method, the alloy Mg-0.2%Ce could be deformed without fracture at a minimum temperature of 350⁰C leading to fine grain size (~3.5 µm) and a weak texture. Grain refinement was more in the initial cast billets compared to the initial extruded billet after processing. The mechanism of grain refinement has been identified as twin assisted dynamic recrystallization (TDRX) and CDRR type. The mechanical properties under tension as well as under compression were also evaluated in the present case. The initially extruded billet has shown low tension compression asymmetry (~1.2) than cast billet (~1.9), after MAF. Chapter 5 addresses the exclusive effect of texture on room temperature tensile properties of the alloy. Different textures were the outcomes of ECAP and MAF processes. In this case, in order to obtain an exact role of texture, a third of deformation mode, rolling, was also introduced. All the processed materials were annealed to obtain similar grain size but different texture. A similar strength and ductility for ECAP and MAF, where the textures were qualitatively very different, was attributed to the fact that texture of both the ECAP and MAF processed materials, was away from the ideal end orientation for tensile tests. In chapter 7, the final outcomes of the thesis have been summarized and scope for the future work has been presented.
9

Andreev bound states and tunneling characteristics of a noncentrosymmetric superconductor

Iniotakis, C., Hayashi, N., Sawa, Y., Yokoyama, T., May, U., Tanaka, Y., Sigrist, M. 07 1900 (has links)
No description available.
10

Quantum transport in a normal metal/odd-frequency superconductor junction

Linder, Jacob, Yokoyama, Takehito, Tanaka, Yukio, Asano, Yasuhiro, Sudbø, Asle 05 1900 (has links)
No description available.

Page generated in 0.1019 seconds