Spelling suggestions: "subject:"deterium."" "subject:"deuterium.""
41 |
Room Temperature Synthesis And Systematic Characterization Of Ultra-small Ceria NanoparticlesPatel, Chetak 01 January 2009 (has links)
Cerium oxide (ceria, CeOâ‚‚) is a rare earth oxide that has attracted wide-spread research interest because of its unique properties such as high mechanical strength, oxygen ion conductivity, oxygen storage capacity and autocatalytic property. In recent years, researchers have discovered that ceria nanoparticles (NPs) are capable of protecting cells from free radical induced damage. Interestingly, it was found that nanometer size (~ 5 nm) ceria can scavenge free radicals quite efficiently, thus acting as an anti-oxidant. This phenomenon has been explained based on the autocatalytic property of ceria NPs. Several methods have been developed for the synthesis of ceria NPs that include flame combustion, hydroxide co-precipitation, hydrothermal/solvothermal, microemulsion, sonochemical and microwave-assisted heating methods and sol-gel method. Ceria NPs synthesized by these methods are often highly aggregated. Furthermore, large scale synthesis of monodispersed CeOâ‚‚ NPs is quite challenging. Therefore it is desirable to synthesize ceria NPs in bulk quantity keeping its important properties intact, specifically free-radical scavenging property. The main goal of this study is therefore to synthesize ultra-small ([less than]5.0 nm), high quality monodispersed ceria NPs in large quantities. In this thesis work, I present a couple of room temperature techniques, dilute sodium hydroxide (NaOH) assisted and ethylenediamine (EN) assisted for the synthesis of nearly mono-dispersed, ultra-small ( < 5 nm) and water-dispersible ceria NPs. Morphology and particle size of the ceria NPs were investigated through high resolution transmission electron microscopy (HRTEM). The HRTEM analysis confirmed the formation of 3.0 ± 0.5 nm size and 2.5 ± 0.2 nm size highlycrystalline ceria NPs when synthesized using dilute NaOH and EN as solvents, respectively. The nanostructures were characterized by X-ray diffraction (XRD) studies to determine the crystal structure and phase purity of the products. The samples were also thoroughly characterized by X-ray photoelectron spectroscopy (XPS) to determine the oxidation state of cerium ions. The presence of the +3 and +4 oxidation states in the samples was also confirmed from the XPS analysis. The co-existence of these two oxidation states is necessary for their applications as free radical scavenger. The autocatalytic behaviors of the ceria NPs were investigated through a hydrogen peroxide test and monitored by UV-visible transmission spectroscopy.
|
42 |
Physical Metallurgy and Thermodynamics of Aluminum Alloys Containing Cerium and Lanthanum / Novel Aluminum Alloys Containing Cerium and LanthanumHosseinifar, Mehdi 07 1900 (has links)
<p>The development of highly formable aluminum alloy sheets is of great interest to the automotive industry, because they provide a lightweight alternative to steel sheet for structural panels. Finding ways to improve the formability of Al alloys is the main subject of the present investigation. This issue is tackled from two angles. First, a possibility of fabricating a two-phase material containing newly discovered ductile intermetallic compounds is considered. The Al-La-Mg system is thermodynamically optimized accompanied with a differential thermal analysis (DTA) experiment to validate the optimization results. A new approach is introduced to deal with the incompatibility of phase models in binary Al-La and La-Mg systems. This approach is successfully applied to the Laves and B2 phases in the binary La-Mg system. A utilization of the thermodynamic description of the Al-La-Mg system to model solidification at low and high cooling rates shows that it is impossible to fabricate such a two-phase material by casting.</p> <p>Second, the effect of small additions of cerium and lanthanum on Fe-bearing intermetallics in a wrought heat-treatable Al alloy is examined. Fe-containing intermetallics are known to deteriorate the formability of Al alloys by acting as void nucleation sites. It is found that in alloys containing 0.1-0.2 wt. % of lanthanum, the fraction of less harmful Chinese script particles is pronouncedly higher than that in the reference alloy. In addition to this advantage, much smaller grains are seen in the alloy with 0.2 wt. % La. Despite similarities between La and Ce, the latter metal neither modifies the microstructure nor noticeably affects the gram size. Hot rolling and solutionizing nullifies the beneficial effect of small La additions resulting in no improvement in the formability of the alloy.</p> <p>In order to understand how lanthanum affects the phase portrait of the alloy, a socalled direct thermal analysis experiment is performed. Solidification paths are derived for slowly cooled alloys by coupling the results of this investigation with microstructural observations. The likelihood of two modification mechanisms is speculated using these solidification paths.</p> / Thesis / Doctor of Philosophy (PhD)
|
43 |
Techniques developed for measuring directional correlations between X rays and conversion electrons or gamma rays in the study of Cerium 139 /Measel, Paul Russell January 1967 (has links)
No description available.
|
44 |
Effect of Small Cerium Additions on Microstructure and Mechanical Properties of Al-Mg-Fe AlloyYan, Xiaofei 09 1900 (has links)
<p>The application aluminum sheet alloy for light vehicle development was limited
by the high cost of alloy fabrication. The impurity iron, which is easily picked up during
fabrication, deteriorates its formability. The sheet alloy produced by continuous casting
techniques was showing lower in-service performance than the one produced with
traditional high-cost direct-chill casting technique. Therefore, enhancing the general
formability of the aluminum alloy became .the aim of many researchers and engineers in
past decades.</p><p>This project was launched to detect a possible modification effect of rare-earth
(RE) element on a Al-Mg-Fe alloy, which is a simplified AA5754 alloy. Cerium was
chosen as the RE element to test with. The influence of this rare-earth element on the
alloy grain microstructure, phase morphology, and corresponding mechanical behavior
was investigated.</p><p>It was found that cerium had a modification effect on the phase morphology to
some extent. Its addition provided a great grain refinement in as-cast alloys. However,
after thermo-mechanical processing, this effect would be eliminated by the small broken
particles and recrystallized fine grains. It was found that the mechanical performance of the cerium-containing AA5754 was neither enhanced nor deteriorated. The AA5754 alloy
remained non-heat-treatable after the addition of cerium.</p> / Thesis / Master of Applied Science (MASc)
|
45 |
Study of the neutron deficient Cerium region : a quasiboson model approachAntaki, Paul January 1980 (has links)
No description available.
|
46 |
Synthèse par ammonolyse et étude des propriétés de luminescence dans des oxynitrures de structure apatite dopés au cérium ou à l’europium / Synthesis by ammonolysis and luminescence properties of cerium or europium-doped oxynitrides with the apatite structureThomas, Sébastien 14 December 2012 (has links)
Les oxynitrures dopés terre rare présentent des propriétés intéressantes pour un usage en tant que luminophore pour LEDs blanches. Une nouvelle famille de luminophores dopés Eu2+ ou Ce3+ avec un réseau hôte oxynitrure de structure apatite a été étudiée : La8+xSr2-x(Si/Ge)6NyO26+x/2-3/2y. L’ammonolyse d’un précurseur oxyde de structure apatite a été utilisée comme technique générale de nitruration. Elle a permis de diminuer substantiellement la température de nitruration en comparaison avec la méthode classique par réaction à l’état solide sous atmosphère mixte N2/H2. Les différentes luminescences des luminophores obtenus ont été étudiées et corrélées à la structure cristalline à l’aide de différentes techniques de caractérisation.La structure apatite présente notamment la particularité de proposer plusieurs sites anioniques pour l’introduction de l’azote ainsi que deux sites cationiques pour les ions terre rare activateurs. L’utilisation de nombreuses techniques de caractérisation (IR, Raman, RMN, diffraction des neutrons) a permis d’obtenir des informations sur la position de l’azote. En parallèle, la comparaison des propriétés optiques avec celles de composés réduits sous Ar/H2 a permis d’attribuer les émissions aux différents sites cristallins disponibles dans la structure. Des mesures de rendement quantique ainsi que des tentatives d’optimisation des propriétés de luminescence ont été effectuées. / Rare-earth doped oxynitrides have attracted much attention as phosphors for white LEDs. A new family of Ce3+ or Eu2+-doped oxynitride phosphors with the apatite structure has been studied: La8+xSr2-x(Si/Ge)6NyO26+x/2-3/2y. The ammonolysis of an apatite oxide precursor has been used as a general method of synthesis, allowing decreasing the nitriding temperature respective to the classical solid state reaction in N2/H2 atmosphere. The luminescence properties of the obtained phosphors have been studied and relationships with the crystalline structure have been drawn.The apatite structure shows several crystallographic sites available for nitrogen as well as two cationic sites for optically active rare-earth ions. Several structural characterization technique have been used (IR, Raman, NMR, Neutron diffraction) and important information has been obtained concerning the nitrogen distribution in the available positions of the crystal structure. Comparison of the luminescent properties with those of compounds reduced under Ar/H2 allowed attributing emissions to the different crystallographic sites available in the structure.Quantum efficiency measurements have been carried out as well as trials for improving the intensity of the luminescent properties.
|
47 |
Wet Chemical Synthesis of Cerium Oxide Nanoparticle and Biological ApplicationFu, Yifei 01 January 2023 (has links) (PDF)
Metal oxide nanoparticles constitute an important class of nanomaterials which has have received tremendous attention due to their distinct, specific activities comparison to their bulk. Among these, cerium oxide nanoparticles (CeNPs) have displayed outstanding promise across a wide range of applications owing to their unique redox properties. Given that the physical and chemical characteristics of nanomaterials are significantly influenced by their morphologies and sizes, the development of well-controlled synthesis methods for CeNPs holds great importance in both scientific research and industrial applications.
This dissertation seeks to peer into the formation of CeNPs in solution through wet chemical synthesis. Additionally, antioxidant properties of CeNPs were examined to explore the potential use of facet CeNPs in gene delivery and promoting wound healing for diabetic. The beginning of this work provides introduction and summary of some common concepts widely used in understanding of nanoparticles formation. In chapter two and three, the spontaneous hydrolysis behavior of tetravalent cerium salts in aqueous systems were studied in detail to understand the influence of synthesis condition on the nucleation kinetic and morphology evolution in the course of growth of nanoparticle. The results obtained from these studies offer constructive insights into designing a straightforward and controlled synthesis strategy for producing nanoclusters and faceted nanoparticles through wet chemical methods. Furthermore, in chapter five, we examine the impact of faceted CeNPs on biomolecule conjugation and their performance in gene delivery for the regulation of abnormal diabetic wound healing.
Overall, by taking advantage of the intrinsic properties of tetravalence cerium salt, this work highlights how manipulation of spontaneous hydrolysis could lead to formation of particles with different nanostructure and physicochemical properties.
|
48 |
Remote Imaging System Acquisition Multispectral ImagerChoate, Laura, Lundstrom, Kevin, Pounds, Kevin, Richards, Garrett, Vinal, Eli 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The National Aeronautics and Space Administration's (NASA) Remote Imaging System Acquisition (RISA) camera will integrate the functionalities of existing space cameras. The system operates between 350nm and 1050nm wavelengths, with a MATLAB user interface, uses a CS-mount standard with a CMOS detector, and has a fixed focal plane. The implementation of a liquid lens uses electrical focus adjustments to image from infinity down to one foot. This will allow wireless operation and reduces mechanical failure. All images and video captured will be transmitted wirelessly to a MATLAB program. This data is then processed and stored, allowing for remote imaging.
|
49 |
Cleavage of Lipids and DNA by Metal Ions and ComplexesWilliams, Dominique 12 August 2014 (has links)
Metal ions and complexes utilized as cleavage agents have influenced many synthetic approaches of scientists to assist in the cleavage and transformation of biomolecules. These metal-based synthetic cleavage agents have potential applications in biotechnology or as molecular therapeutic agents. Herein, we have examined Ce(IV) metal ion and complexes as acidic hydrolytic agents in lipid hydrolysis reactions (Chapter 2 and 3), and a copper(II) complex that photo-oxidizes DNA upon exposure to ultraviolet light (Chapter 4). In Chapter 2 we examined the hydrolysis of sphingomyelin vesicles by Ce(NH4)2(NO3)6 (Ce(IV)) and compared the results to twelve d- and f-block metal salts, hydrolysis of mixed lipid vesicles and mixed micelles of sphingomyelin by Ce(IV), and hydrolysis of phosphatidylcholine vesicles by Ce(IV), using either MALDI-TOF mass spectrometry or colorimetric assays. In Chapter 3, we described the study of a Ce(IV) complex based on 1,3-bis[tris(hydroxymethyl)methylamino]propane as a potential acidic hydrolytic agent of phospholipids using colorimetric assays and NMR spectroscopy. The hydrolytic agent provided markedly enhance hydrolysis at lysosomal pH (~ 4.8), but suppress hydrolysis when pH was raised to near-neutral pH (~ 7.2). This was due to the pKa values of the donor atoms of the ligand, in which the metal’s electrophilicity was reduced to a greater extent at ~ pH 7.2 compared to ~ pH 4.8. Chapter 4 describes the synthesis and study of a Cu(II) complex based on a hexaazatriphenylene derivative for photo-assisted cleavage of double-helical DNA. Scavenger and chemical assays suggested the formation of DNA damaging reactive oxygen species, hydroxyl and superoxide radicals, and hydrogen peroxide, in the photocleavage reactions. Thermal denaturation and UV-vis absorption studies suggested that the Cu(II) complex binds in a non-intercalative fashion to duplex DNA.
|
50 |
The role of the nano-environmental interface in ZnO and CeO2 nanoparticle ecotoxicologyWalker, Nicholas David Leyland January 2012 (has links)
An increase in nanotechnology has seen an associated rise in nanoparticles released into the environment. Their potential toxicity and exposure to humans and the environment, the field of nanoecotoxicology, is not yet well understood. The interactions at the nanoparticle surface will play a fundamental role in the nanoparticle behaviour once released into the environment. This study aims to characterise the particle surface interaction, determining key parameters influential in the nanoparticle fate. Evanescent Wave Cavity Ring Down Spectroscopy techniques have been applied to study molecular interactions at the silica-water charged interface. The adsorption of the electronic spectrum of Crystal Violet has demonstrated the formation of a monolayer with different binding site orientation at the interface. The binding affinity for the chromophore was calculated as 29.15 ± 0.02 kJmol-1 at pH 9 and this was compared with other interface structures involving both inorganic and organic components. The study of the model interface was extended to the properties of CeO2 nanoparticles, where the surface charge density was determined to be 1.6 ± 0.3 e- nm-2.The nanoparticle surface charge controls the suspension stability which was measured for CeO2 nanoparticles giving a stability half-life of 330 ± 60 hours in pure water, and 3.6 ± 0.6 hours in ISOFish water. Studies were extended to the toxicity of ZnO nanoparticles. An assay was developed to quantify the photo-electron production for nanoparticles exposed to UV light both in deionised water and soil suspensions with a photo-radical production yield of 19 ± 2 % and an electron production of 709 e-s-1np-1 for a 100 mgL-1 suspension. The species-specific photo-radical assay was subsequently used to determine the rate of ZnO nanoparticle dissolution in water and soil suspensions. Comparable dissolution rates in complex cell growth media were also measured, detecting total zinc by Inductively Coupled Plasma Atomic Emission Spectroscopy, with comparable dissolution rates derived.
|
Page generated in 0.0252 seconds