• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diverse monogenetic volcanism across the main arc of the central Andes, northern Chile

van Alderwerelt, Brennan Martin Edelman de Roo 01 January 2017 (has links)
Instances of fault-controlled monogenetic volcanism across the subduction arc of the Central Andes at ~ 23°S illuminate the nature of different parental melts being delivered to the crust. Evidence of magmatic history is preserved in bulk rock geochemistry, the content of melt inclusions, and mineral compositions. Volcanism in this region is dominated by felsic and intermediates lavas as the thickened crust (55 – 65 km) and vast volumes (> 500,000 km3) of mid-crustal magma beneath the Altiplano-Puna high plateau region prevent mafic magmas from reaching the surface (Davidson & De Silva, 1991; Beck et al., 1996; Perkins et al., 2016). However, small volumes of relatively undifferentiated lava have been delivered from the lower crust to the surface along zones of crustal weakness without extensive processing by crustal assimilation and/or extended storage in sub-volcanic magma chambers. Monogenetic eruptions of less-differentiated lava provide important constraints on compositions normally obscured by crustal processing in the Central Andes. Basaltic andesite sampled within the frontal arc (Cerro Overo maar) is a regional mafic end-member and approximates the composition of parental arc magmas derived from partially-molten lower crustal regions where mantle-derived magmas interact with the surrounding lithosphere and undergo density differentiation (MASH zones). Basaltic olivine-hosted melt inclusions from Cerro Overo provide a glimpse of less-evolved melt composition from this region and suggest mobilization of MASH magma by injection of basaltic melt. Basaltic andesite sampled from the eastern (back) margin of the frontal arc (Puntas Negras – El Laco) is another regional mafic endmember, representing a mantle-derived magma composition that is transitional between subduction arc magmatism and intraplate magmatism of the back-arc. The internal crystal architecture revealed by major and trace element zoning of olivine phenocrysts indicates Cerro Overo magma experienced continuous ascent, while Puntas Negras magma experienced a brief period of stalling or storage near the brittle-ductile transition zone (~ 25 km). Aphyric intermediate monogenetic lavas sampled west of (before) the frontal arc display Adakite-like signatures (e.g. high Sr/Y and Sm/Yb) represent small amounts of melt generated with a significant contribution from direct melting of the metabasaltic slab or delaminated lithospheric root at high pressure. These three magmatic regimes sampled at monogenetic centers approximate different end-member compositions being delivered to the lower crust of the Central Andes from which the range of intermediate main arc volcanism in the Altiplano-Puna region is ultimately derived.

Page generated in 0.0436 seconds