Spelling suggestions: "subject:"chaînes coupled ett triplet"" "subject:"chaînes coupled eet triplet""
1 |
Modèles de Markov triplets en restauration des signauxBen Mabrouk, Mohamed 26 April 2011 (has links) (PDF)
La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les domaines les plus divers comme économie, santé, traitement du signal, ... Un des problèmes de base, qui est au coeur de cette thèse, est d'estimer une séquence cachée (Xn)1:N à partir d'une séquence observée (Yn)1:N. Ces séquences sont considérées comme réalisations, respectivement, des processus (Xn)1:N et (Yn)1:N. Plusieurs techniques ont été développées pour résoudre ce problème. Le modèle parmi le plus répandu pour le traiter est le modèle dit "modèle de Markov caché" (MMC). Plusieurs extensions de ces modèles ont été proposées depuis 2000. Dans les modèles de Markov couples (MMCouples), le couple (X, Y) est markovien, ce qui implique que p(x|y) est également markovienne (alors que p(x) ne l'est plus nécessairement), ce qui permet les mêmes traitements que dans les MMC. Plus récemment (2002) les MMCouples ont été étendus aux "modèles de Markov triplet" (MMT), dans lesquels on introduit un processus auxiliaire U et suppose que le triplet T = (X, U, Y) est markovien. Là encore il est possible, dans un cadre plus général que celui des MMCouples, d'effectuer des traitements avec une complexité raisonnable. L'objectif de cette thèse est de proposer des nouvelles modélisations faisant partie des MMT et d'étudier leur pertinence et leur intérêt. Nous proposons deux types de nouveautés: (i) Lorsque la chaîne cachée est discrète et lorsque le couple (X, Y) n'est pas stationnaire, avec un nombre fini de "sauts" aléatoires dans les paramètres, l'utilisation récente des MMT dans lesquels les sauts sont modélisés par un processus discret U a donné des résultats très convaincants (Lanchantin, 2006). Notre première idée est d'utiliser cette démarche avec un processus U continu, qui modéliserait des non-stationnarités "continues" de(X, Y). Nous proposons des chaînes et des champs triplets et présentons quelques expériences. Les résultats obtenus dans la modélisation de la non-stationnarité continue semblent moins intéressants que dans le cas discret. Cependant, les nouveaux modèles peuvent présenter d'autres intérêts; en particulier, ils semblent plus efficaces que les modèles "chaînes de Markov cachées" classiques lorsque le bruit est corrélé; (ii) Soit un MMT T = (X, U, Y) tel que X et Y sont continu et U est discret fini. Nous sommes en présence du problème de filtrage, ou du lissage, avec des sauts aléatoires. Dans les modélisations classiques le couple caché (X, U) est markovien mais le couple (U, Y) ne l'est pas, ce qui est à l'origine de l'impossibilité des calculs exacts avec une complexité linéaire en temps. Il est alors nécessaire de faire appel à diverses méthodes approximatives, dont celles utilisant le filtrage particulaire sont parmi les plus utilisées. Dans des modèles MMT récents le couple caché (X, U) n'est pas nécessairement markovien, mais le couple (U, Y) l'est, ce qui permet des traitements exacts avec une complexité raisonnable (Pieczynski 2009). Notre deuxième idée est d'étendre ces derniers modèles aux triplets T = (X, U, Y) dans lesquels les couples (U, Y) sont "partiellement" de Markov. Un tel couple (U, Y) n'est pas de Markov mais U est de Markov conditionnellement àY. Nous obtenons un modèle T = (X, U, Y) plus général, qui n'est plus de Markov, dans lequel le filtrage et le lissage exacts sont possibles avec une complexité linéaire en temps. Quelques premières simulations montrent l'intérêt des nouvelles modélisations en lissage en présence des sauts.
|
2 |
Modèles de Markov triplets en restauration des signaux / Triplet Markov models in restoration signalsBen Mabrouk, Mohamed 26 April 2011 (has links)
La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les domaines les plus divers comme économie, santé, traitement du signal, ... Un des problèmes de base, qui est au coeur de cette thèse, est d'estimer une séquence cachée (Xn)1:N à partir d'une séquence observée (Yn)1:N. Ces séquences sont considérées comme réalisations, respectivement, des processus (Xn)1:N et (Yn)1:N. Plusieurs techniques ont été développées pour résoudre ce problème. Le modèle parmi le plus répandu pour le traiter est le modèle dit "modèle de Markov caché" (MMC). Plusieurs extensions de ces modèles ont été proposées depuis 2000. Dans les modèles de Markov couples (MMCouples), le couple (X, Y) est markovien, ce qui implique que p(x|y) est également markovienne (alors que p(x) ne l'est plus nécessairement), ce qui permet les mêmes traitements que dans les MMC. Plus récemment (2002) les MMCouples ont été étendus aux "modèles de Markov triplet" (MMT), dans lesquels on introduit un processus auxiliaire U et suppose que le triplet T = (X, U, Y) est markovien. Là encore il est possible, dans un cadre plus général que celui des MMCouples, d'effectuer des traitements avec une complexité raisonnable. L'objectif de cette thèse est de proposer des nouvelles modélisations faisant partie des MMT et d'étudier leur pertinence et leur intérêt. Nous proposons deux types de nouveautés: (i) Lorsque la chaîne cachée est discrète et lorsque le couple (X, Y) n'est pas stationnaire, avec un nombre fini de "sauts" aléatoires dans les paramètres, l'utilisation récente des MMT dans lesquels les sauts sont modélisés par un processus discret U a donné des résultats très convaincants (Lanchantin, 2006). Notre première idée est d'utiliser cette démarche avec un processus U continu, qui modéliserait des non-stationnarités "continues" de(X, Y). Nous proposons des chaînes et des champs triplets et présentons quelques expériences. Les résultats obtenus dans la modélisation de la non-stationnarité continue semblent moins intéressants que dans le cas discret. Cependant, les nouveaux modèles peuvent présenter d'autres intérêts; en particulier, ils semblent plus efficaces que les modèles "chaînes de Markov cachées" classiques lorsque le bruit est corrélé; (ii) Soit un MMT T = (X, U, Y) tel que X et Y sont continu et U est discret fini. Nous sommes en présence du problème de filtrage, ou du lissage, avec des sauts aléatoires. Dans les modélisations classiques le couple caché (X, U) est markovien mais le couple (U, Y) ne l'est pas, ce qui est à l'origine de l'impossibilité des calculs exacts avec une complexité linéaire en temps. Il est alors nécessaire de faire appel à diverses méthodes approximatives, dont celles utilisant le filtrage particulaire sont parmi les plus utilisées. Dans des modèles MMT récents le couple caché (X, U) n'est pas nécessairement markovien, mais le couple (U, Y) l'est, ce qui permet des traitements exacts avec une complexité raisonnable (Pieczynski 2009). Notre deuxième idée est d'étendre ces derniers modèles aux triplets T = (X, U, Y) dans lesquels les couples (U, Y) sont "partiellement" de Markov. Un tel couple (U, Y) n'est pas de Markov mais U est de Markov conditionnellement àY. Nous obtenons un modèle T = (X, U, Y) plus général, qui n'est plus de Markov, dans lequel le filtrage et le lissage exacts sont possibles avec une complexité linéaire en temps. Quelques premières simulations montrent l'intérêt des nouvelles modélisations en lissage en présence des sauts. / Statistical unsupervised restoration of signal can be applied in many fields such as economy, health, signal processing, meteorology, finance, biology, reliability, transportation, environment, ... the main problem treated in this thesis is to estimate a hidden sequence (Xn)1:N based on an observed sequence (Yn)1:N. In Probabilistic treatment of the problem in these sequences are considered as accomplishments of respectively, process (Xn)1:N and (Yn)1:N. Several techniques based on statistical methods have been developed to solve this problem. The most common model known for this kind of problems is the “hidden Markov model”. In this model we assume that the hidden process X is Markovian and laws p(y|x) of Y are conditional on X are sufficiently simple so that the law p(x|y) is also Markovian, this property is necessary for treatment. Many Extensions of these models have been proposed since 2000. In Markov models couples (MMCouples), more general than the MMC, the pair (X,Y) is Markovian), implying that p(x|y) is also Markovian (when p(x) is not necessarily markovian), which allows the same treatment as in MMC. More recently (2002), were extended to MMCouples are extended to Markov models Triplet (MMT), in which we introduce an auxiliary process U and suppose that the triple T=(X,U,Y) is Markovian. It’s again possible, in a general case of MMCouples, to perform treatments with a reasonable complexity. The objective of this thesis is to propose new modeling of MMT and to investigate their relevance and interest. We offer two types of innovations: (i) When the hidden system is discrete and when the couple (X,Y) is not stationary with a finite number of random “jumps” in parameters, the recent use of MMT where the jumps are modelized by a discrete process U has been very convincing (Lanchantin, 2006). Our first idea is to use this approach with a continuous process U, which models non-steady "continuous" of (X,Y). We propose chains and triplet fields and present some experiments. The results obtained in the modeling of non-stationarity still seem less interesting that in the discrete case. However, new models may have other interests, in particular, they seem more efficient than “classic hidden Markov” when the noise is correlated; (ii) Considering an MMT T=(X,U,Y) such that X and Y are continuous and U is discrete finite. We are dealing with a problem of filtering, or smoothing, with random jumps. In classic modelling the hidden pair (X,U) is Markovian, but the pair (U,Y) is not, what is the cause of the impossibility of Exact calculations with time linear complexity. It is then necessary to use various approximate methods, including methods using particle filtering which are the most common. In recent models MMT the hidden pair (X,U) is not necessarily Markovian, but the pair (U,Y) is Markovian, which allows accurate treatment with a reasonable complexity (Pieczynski 2009). Our second idea is to extend these models to triplets T=(X,U,Y) where the pairs (U,Y) are "partially" Markovian. Such a pair (U,Y) is not Markovian but U is conditionally Markovian on Y. We have in result a model with general model T=(X,U,Y) , which is no more Markovian, wherein the filtering and smoothing are accurate possible with time linear complexity. Some preliminary Simulations show the importance of new smoothing models with of jumps.
|
Page generated in 0.0711 seconds