• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical study on two dimensional transition metal dichalcogenides

Zhu, Bairen, 朱柏仁 January 2014 (has links)
Atomically thin group-VI transition metal dichalcogenides (TMDC) has been emerging as a family of intrinsic 2-dimensional (2D) crystals with a sizeable bandgap in the visible and near infrared range, satisfying numerous requirements for ultimate electronics and optoelectronics. This intrinsic 2D crystal also provides a perfect platform for physics study in 2D semiconductors. The characteristic inversion symmetry breaking presented in monolayer TMDCs leads to non-zero but contrasting Berry curvatures and orbital magnetic moments at K/K’ valleys located at the corners of the first Brillouin zone. These features provide an opportunity to manipulate electrons’ additional internal degrees of freedom, namely the valley degree of freedom, making monolayer TMDC a promising candidate for the conceptual valleytronics. Besides, the strong spin-orbit interactions and the subsequent spin-valley coupling demonstrated in 2D TMDCs open potential new routes towards quantum manipulation. In this thesis, I give a brief review on the background and our progress of the physics study in 2D TMDCs (MoS2, WS2) via optical spectroscopy. Particularly, our experimental approach on the excitonic effect, valley dependent circular dichroism, and the spin-valley coupling in monolayer and bilayer TMDCs are elaborated in individual chapters. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy

Page generated in 0.1228 seconds