Spelling suggestions: "subject:"champ dde gradient"" "subject:"champ dee gradient""
1 |
Structures d'une image: De la réalité augmentée à la stylisation d'imagesChen, Jiazhou 12 July 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons aux structures d'une image en général, et plus particulièrement aux gradients et aux contours. Ces dernières se sont révélées très importantes ces dernières années pour de nombreuses applications en infographie, telles que la réalité augmentée et la stylisation d'images et de vidéos. Le but de toute analyse des structures d'une image est de décrire à un haut-niveau la compréhension que l'on peut avoir de son contenu et de fournir les bases nécessaires à l'amélioration de la qualité des applications citées au-dessus, notamment la lisibilité, la précision, la cohérence spatiale et temporelle. Dans une premier temps, nous démontrons le rôle important que ces structures jouent pour des applications de type composition ''Focus+Context''. Une telle approche est utilisée en réalité augmentée pour permettre la visualisation de parties d'une scènes qui sont normalement derrières ce que l'on peut observer dans un flux vidéo. L'utilisation d'une segmentation et de lignes caractéristiques permettent de mettre en avant et/ou de révéler les relations d'ordre entre les différents objets de la scène. Pour la synthèse d'images guidée par une fonction d'importance, de multiples styles de rendu sont combinés de manière cohérente grâce à l'utilisation d'une carte de gradients et une de saillance. Dans un deuxième temps, nous introduisons une nouvelle techniques qui permet de reconstruire de manière continue un champ de gradient, et ceci sans trop lisser les détails originaux contenus dans l'image. Pour cela, nous développons une nouvelle méthode d'approximation locale et de plus haut-degré pour des champs de gradients discrets et non-orientés. Cette méthode est basée sur le formalisme ''moving least square'' (MLS). Nous démontrons que notre approximation isotrope et linéaire est de meilleure qualité que le classique tenseur de structure~: les détails sont mieux préservés et les instabilités sont réduites de manière significative. Nous démontrons aussi que notre nouveau champ de gradients apporte des améliorations à de nombreuses techniques de stylisation. Finalement, nous démontrons que l'utilisation d'une technique d'analyse de profil caractéristique par approximation polynomiale permet de distinguer les variations douces des zones dures. Les paramètres du profil sont utilisés comme des paramètres de stylisation tels que l'orientation des coups de pinceau, leur taille et leur opacité. Cela permet la création d'une large variété de styles de ligne.
|
2 |
Structure d'une image : de la réalité augmentée à la stylisation d'imagesChen, Jiazhou 12 July 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons aux structures d'une image en général, et plus particulièrement aux gradients et aux contours. Ces dernières se sont révélées très importantes ces dernières années pour de nombreuses applications en infographie,telles que la réalité augmentée et la stylisation d'images et de vidéos. Le but de toute analyse des structures d'une image est de décrire à un haut-niveau la compréhension que l'on peut avoir de son contenu et de fournir les bases nécessaires à l'amélioration de la qualité des applications citées au-dessus, notamment la lisibilité, la précision, la cohérence spatiale et temporelle.Dans une premier temps, nous démontrons le rôle important que ces structures jouent pour des applications de type composition "Focus+Context". Une telle approche est utilisée en réalité augmentée pour permettre la visualisation de parties d'une scènes qui sont normalement derrières ce que l'on peut observer dans un flux vidéo. L'utilisation d'une segmentation et de lignes caractéristiques permettent de mettre en avant et/ou de révéler les relations d'ordre entre les différents objets de la scène. Pour la synthèse d'images guidée par une fonction d'importance, de multiples styles de rendu sont combinés de manière cohérente grâce à l'utilisation d'une carte de gradients et une de saillance.Dans un deuxième temps, nous introduisons une nouvelle techniques qui permet de reconstruire de manière continue un champ de gradient, et ceci sans trop lisser les détails originaux contenus dans l'image. Pour cela, nous développons une nouvelle méthode d'approximation locale et de plus haut-degré pour des champs de gradients discrets et non-orientés. Cette méthode est basée sur le formalisme"moving least square" (MLS). Nous démontrons que notre approximation isotrope et linéaire est de meilleure qualité que le classique tenseur de structure : les détails sont mieux préservés et les instabilités sont réduites de manière significative. Nous démontrons aussi que notre nouveau champ de gradients apporte des améliorations à de nombreuses techniques de stylisation.Finalement, nous démontrons que l'utilisation d'une technique d'analyse de profil caractéristique par approximation polynomiale permet de distinguer les variations douces des zones dures. Les paramètres du profil sont utilisés comme des paramètres de stylisation tels que l'orientation des coups de pinceau, leur taille et leur opacité. Cela permet la création d'une large variété de styles de ligne.
|
3 |
Image structures : from augmented reality to image stylization / Structure d'une image : de la réalité augmentée à la stylisationChen, Jiazhou 12 July 2012 (has links)
Dans cette thèse, nous nous intéressons aux structures d’une image en général, et plus particulièrement aux gradients et aux contours. Ces dernières se sont révélées très importantes ces dernières années pour de nombreuses applications en infographie,telles que la réalité augmentée et la stylisation d’images et de vidéos. Le but de toute analyse des structures d’une image est de décrire à un haut-niveau la compréhension que l’on peut avoir de son contenu et de fournir les bases nécessaires à l’amélioration de la qualité des applications citées au-dessus, notamment la lisibilité, la précision, la cohérence spatiale et temporelle.Dans une premier temps, nous démontrons le rôle important que ces structures jouent pour des applications de type composition “Focus+Context”. Une telle approche est utilisée en réalité augmentée pour permettre la visualisation de parties d’une scènes qui sont normalement derrières ce que l’on peut observer dans un flux vidéo. L’utilisation d’une segmentation et de lignes caractéristiques permettent de mettre en avant et/ou de révéler les relations d’ordre entre les différents objets de la scène. Pour la synthèse d’images guidée par une fonction d’importance, de multiples styles de rendu sont combinés de manière cohérente grâce à l’utilisation d’une carte de gradients et une de saillance.Dans un deuxième temps, nous introduisons une nouvelle techniques qui permet de reconstruire de manière continue un champ de gradient, et ceci sans trop lisser les détails originaux contenus dans l’image. Pour cela, nous développons une nouvelle méthode d’approximation locale et de plus haut-degré pour des champs de gradients discrets et non-orientés. Cette méthode est basée sur le formalisme“moving least square” (MLS). Nous démontrons que notre approximation isotrope et linéaire est de meilleure qualité que le classique tenseur de structure : les détails sont mieux préservés et les instabilités sont réduites de manière significative. Nous démontrons aussi que notre nouveau champ de gradients apporte des améliorations à de nombreuses techniques de stylisation.Finalement, nous démontrons que l’utilisation d’une technique d’analyse de profil caractéristique par approximation polynomiale permet de distinguer les variations douces des zones dures. Les paramètres du profil sont utilisés comme des paramètres de stylisation tels que l’orientation des coups de pinceau, leur taille et leur opacité. Cela permet la création d’une large variété de styles de ligne. / In this thesis we consider in general image structures and more specifically, imagegradient and contours. They have been proven useful in recent years for variouscomputer graphics applications, such as Augmented Reality (AR), image and videostylization. The goal of analyzing image structures is to describe a high level understandingof image contents and to provide a powerful support to improve thequality of applications, such as visual legibility, accuracy, spatial and temporal coherence.We first demonstrate the important role of image structures in Focus+Contextcompositing. For Focus+Context rendering in AR, a technique dedicated to the visualizationof hidden scenes in video streams, the use of screen segmentation andfeature lines significantly emphasizes the depth cues of occluded scenes, and revealsthe correct occluding order. For importance-driven image synthesis, multiplerendering styles are combined in a coherent manner by using image gradient fieldand saliency map.In the second part, we thus introduce a new approach to estimate a continuousgradient field without oversmoothing the original details contained in an image.For this purpose, we develop a new and higher-order local approximation methodof discrete non-oriented gradient fields based on a moving least square (MLS) formalism.We show that our isotropic linear approximation outperforms classicalstructure tensor: image details are better preserved and instabilities are significantlyreduced. We demonstrate how our non-oriented MLS gradient field benefitsto various image stylization approaches.Finally, we demonstrate that the use of a feature profile analysis for image lineextraction via fitting techniques permits to distinguish sharp and smooth features.Profile parameters are then mapped to stylistic parameters such as brush orientation,size or opacity to give rise to a wide range of line-based styles.
|
4 |
Contributions to modeling, structural analysis, and routing performance in dynamic networks / Contributions à la modélisation, l'analyse structurelle et aux performances de routage des réseaux dynamiquesNguyen, Anh-Dung 18 July 2013 (has links)
Cette thèse apporte des contributions à la modélisation, compréhension ainsi qu’à la communication efficace d’information dans les réseaux dynamiques peuplant la périphérie de l’Internet. Par réseaux dynamiques, nous signifions les réseaux pouvant être modélisés par des graphes dynamiques dans lesquels noeuds et liens évoluent temporellement. Dans la première partie de la thèse, nous proposons un nouveau modèle de mobilité - STEPS - qui permet de capturer un large spectre de comportement de mobilité humains. STEPS mets en oeuvre deux principes fondamentaux de la mobilité humaine : l’attachement préférentiel à une zone de prédilection et l’attraction vers une zone de prédilection. Nous proposons une modélisation markovienne de ce modèle de mobilité. Nous montrons que ce simple modèle paramétrique est capable de capturer les caractéristiques statistiques saillantes de la mobilité humaine comme la distribution des temps d’inter-contacts et de contacts. Dans la deuxième partie, en utilisant STEPS, nous analysons les propriétés comportementales et structurelles fondamentales des réseaux opportunistes. Nous redéfinissons dans le contexte des réseaux dynamiques la notion de structure petit monde et montrons comment une telle structure peut émerger. En particulier, nous montrons que les noeuds fortement dynamiques peuvent jouer le rôle de ponts entre les composants déconnectés, aident à réduire significativement la longueur du chemin caractéristique du réseau et contribuent à l’émergence du phénomène petit-monde dans les réseaux dynamiques. Nous proposons une façon de modéliser ce phénomène sous STEPS. À partir d’un réseau dynamique régulier dans lequel les noeuds limitent leur mobilité à leurs zones préférentielles respectives. Nous recablons ce réseau en injectant progressivement des noeuds nomades se déplaçant entre plusieurs zones. Nous montrons que le pourcentage de tels nœuds nomades est de 10%, le réseau possède une structure petit monde avec un fort taux de clusterisation et un faible longueur du chemin caractéristique. La troisième contribution de cette thèse porte sur l’étude de l’impact du désordre et de l’irrégularité des contacts sur la capacité de communication d’un réseau dynamique. Nous analysons le degré de désordre de réseaux opportunistes réels et montrons que si exploité correctement, celui-ci peut améliorer significativement les performances du routage. Nous introduisons ensuite un modèle permettant de capturer le niveau de désordre d’un réseau dynamique. Nous proposons deux algorithmes simples et efficaces qui exploitent la structure temporelle d’un réseau dynamique pour délivrer les messages avec un bon compromis entre l’usage des ressources et les performances. Les résultats de simulations et analytiques montrent que ce type d’algorithme est plus performant que les approches classiques. Nous mettons également en évidence aussi la structure de réseau pour laquelle ce type d’algorithme atteint ses performances optimum. Basé sur ce résultat théorique nous proposons un nouveau protocole de routage efficace pour les réseaux opportunistes centré sur le contenu. Dans ce protocole, les noeuds maintiennent, via leurs contacts opportunistes, une fonction d’utilité qui résume leur proximité spatio-temporelle par rapport aux autres noeuds. En conséquence, router dans un tel contexte se résume à suivre le gradient de plus grande pente conduisant vers le noeud destination. Cette propriété induit un algorithme de routage simple et efficace qui peut être utilisé aussi bien dans un contexte d’adressage IP que de réseau centré sur les contenus. Les résultats de simulation montrent que ce protocole superforme les protocoles de routage classiques déjà définis pour les réseaux opportunistes. La dernière contribution de cette thèse consiste à mettre en évidence une application potentielle des réseaux dynamiques dans le contexte du « mobile cloud computing ». / This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity.
|
Page generated in 0.0523 seconds