• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse des perturbations orbitales d'un satellite autour de Mars/Orbital perturbations analysis of a spacecraft around Mars

Duron, Julien 11 June 2007 (has links)
Mars est entourée d'une atmosphère ténue, composée à 95% de dioxyde de carbone (CO2). Au cours d'une année martienne, des transferts de masse (jusqu'à 30% du CO2 atmosphérique) entre l'atmosphère et les calottes polaires produisent des variations temporelles à très grande longueur d'onde du champ de gravité, notamment des harmoniques zonaux de son développement en harmoniques sphériques (de fait les coefficients ”composites” de degré 2 et 3). D'un autre côté, le potentiel gravitationnel du Soleil induit des déformations, dites de marée, du volume martien. Ces déformations produisent un potentiel perturbateur en tout point extérieur à la planète, proportionnel à son nombre de Love de degré 2 k2. k2 traduit la réponse élastique de la planète au potentiel solaire et permet de caractériser physiquement le noyau de Mars (sa nature, solide ou liquide, et son rayon). Une manière de quantifier les transferts de la masse atmosphérique et l'état du noyau est de déterminer les perturbations inhérentes sur le mouvement d'un satellite artificiel. Le cycle saisonnier du CO2 et l'état du noyau impliquent aussi des variations de la rotation de Mars. Une autre manière de quantifier les transferts de la masse atmosphérique et l'état du noyau est donc d'observer leurs effets sur la rotation. Des simulations d'observations de trajectographie de satellites (comme celles de Mars Global Surveyor, MGS, Odyssey, MODY) et/ou de la position d'un réseau de stations à la surface de Mars (comme dans l'expérience NEIGE) nous ont permis de voir s'il est possible de restituer précisément les variations des harmoniques zonaux de gravité de bas degré et/ou la rotation. Avec les observations réelles de trajectographie des missions américaines MGS et MODY, on a restitué les variations des harmoniques zonaux de gravité de bas degré et k2.
2

Expérimentation d’un gravimètre mobile léger et novateur pour la mesure du champ de gravité en fond de mer / Experimentation of a light and innovative mobile gravimeter for the measurement of the gravity field in the seabed

Roussel, Clément 19 June 2017 (has links)
L’un des défis majeurs relevé par la gravimétrie moderne consiste en la détermination de modèles mathématiques et de cartes numériques du champ de gravité de la Terre dont la fiabilité est identique quelle que soit l’échelle spatiale considérée en domaines terrestre, littoral, marin et sous-marin. Aujourd’hui, les harmoniques de haut degré correspondant aux courtes longueurs d’onde du champ de gravité sont encore affectés de grandes incertitudes de par la diversité et les différences de précision et de résolution des techniques gravimétriques permettant de les atteindre. Le principal obstacle à l’amélioration de la résolution et la précision des modèles vient de ce que les systèmes de gravimétrie et gradiométrie mobiles, seuls instruments qui permettent des acquisitions à précision et à résolution spatiale homogènes, demeurent encore encombrants et gros consommateurs d’énergie, ce qui interdit en particulier leur installation sur des drones terrestres, aériens, navals de surface et sous-marins. L’intérêt de ce type de porteur est de pouvoir opérer des acquisitions très proches des sources ce qui accroît considérablement la restitution des variations locales de la gravité. Le développement d’un nouveau type de capteur gravimétrique à faible encombrement et moindre consommation énergétique apparaît donc indispensable pour répondre à la problématique posée par la mesure des courtes longueurs d’onde du champ de gravité.Dans le cadre de ses activités de recherche en gravimétrie, le Laboratoire de Géomatique et Foncier (Cnam/GeF EA 4630), en collaboration avec le Laboratoire de Recherche en Géodésie (LAREG) de l’Institut National de l’information Géographique et forestière (IGN), le Laboratoire Domaines Océaniques (LDO, UMR CNRS 6538, UBO), l’Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER) et le Service Hydrographique et Océanographique de la Marine (SHOM), développe un instrument novateur qui permet la mesure dynamique du champ de gravité terrestre en fond de mer.Le système baptisé GraviMob (système de Gravimétrie Mobile) ne nécessite pas de plateforme stabilisée et se fixe rigidement dans l’habitacle du véhicule porteur, en l’occurrence, un submersible autonome. Le cœur du système est constitué de triades d’accéléromètres, permettant une mesure vectorielle de l’accélération de pesanteur. Un traitement des mesures par filtrage de Kalman, intégrant les données de position et d’orientation du véhicule porteur, réalise la restitution du champ de pesanteur dans un référentiel adapté à son interprétation et son exploitation. Ce prototype instrumental a été expérimenté en Mer Méditerranée au cours de l’année 2016, à l’aplomb de profils gravimétriques de surface acquis antérieurement par le SHOM. La comparaison du signal gravimétrique obtenu en fond de mer avec les données du SHOM indique une répétabilité de la tendance générale du signal gravimétrique à 5 mGal près.Ce manuscrit aborde successivement, l’établissement de l’équation d’observation du système GraviMob, l’étalonnage et l’orientation des accéléromètres du capteur, la stratégie d’estimation du champ de pesanteur par un filtre de Kalman intégrant un modèle d’évolution des composantes du champ de pesanteur et un modèle d’observation tenant compte du bruit de mesure, le traitement et l’analyse des mesures acquises lors de son expérimentation en Mer Méditerranée, puis la comparaison du signal gravimétrique obtenu avec les données de référence. / One of the major challenges of modern gravimetry consists in determining mathematical models and digital maps of the Earth’s gravity field, the reliability of which is identical whatever the spatial scale considered in terrestrial, coastal, marine and submarine domains. Today, the harmonics of high degree corresponding to the short wavelengths of the gravity field are still affected by great uncertainties due to the diversity and the differences in precision and resolution of the gravimetric techniques making it possible to reach them. The main obstacle to improve the resolution and accuracy of models is that gravimetry and gradiometry mobile devices, the only instruments that allow homogeneous precision and spatial resolution acquisitions, are still bulky and energy-intensive, which prohibits their installation on terrestrial, aerial, surface and submarine drones. The interest of this type of carrier is to make acquisitions very close to the sources which considerably increases the restitution of the local variations of the gravity. The development of a new type of gravimetric sensor with small size and lower energy consumption appears therefore essential to answer the problematic posed by the measurement of the short wavelenghts of the gravity field.As part of its research in gravimetry, the Laboratoire Géomatique et Foncier (Cnam/GeF EA 4630), in collaboration with the Laboratory for Research Geodesy (LAREG) of the National Institute for Geographic and Forest Information (IGN), the Oceanic Domains Laboratory (LDO, UMR, CNRS 6538, UBO), the French Research Institute for the Exploitation of the Sea (IFREMER) and the Marine Hydrographic and Oceanographic Service (SHOM), develops an innovative instrument which allows the dynamic measurement of the Earth’s gravity field in the subsea domain.The system, called GraviMob (Gravimetry Mobile System), does not require a stabilized platform and is rigidly attached to the carrier vehicule, in this case an Autonomous Underwater Vehicule (AUV). The heart of the system consists of triads of accelerometers, allowing a vector measurement of the gravity. A Kalman filter, integrating the position and orientation data of the carrier vehicle, performs the estimation of the gravity field in a frame adapted to its interpretation. This instrumental prototype has been tested in the Mediterranean Sea during the year 2016. The comparison of the gravimetric signal obtained near the seabed with the surface gravimetric profiles, previously acquired by the SHOM, indicates a repeatability of the general trend of the gravimetric signal to within 5 mGal.This manuscript deals successively with the establishment of the observation equation of the GraviMob system, the calibration and orientation of the accelerometers, the gravity field estimation strategy by a Kalman filter, integrating an evolution model of the gravity field components and an observation model taking the measurement noise into account, the processing and analysis of the measurements acquired during its experimentation in the Mediterranean Sea, then the comparison of the gravimetric signal obtained with the reference data.
3

Rotation terrestre et Variations du champ de gravité : Etude et apport des missions CHAMP et GRACE

Bourda, Géraldine 20 December 2004 (has links) (PDF)
La distribution des masses à l'intérieur de la Terre régit la vitesse de rotation terrestre, ainsi que le comportement de l'axe de rotation terrestre dans la Terre, et dans l'espace. Ces distributions de masses peuvent être mesurées depuis l'espace grâce aux satellites artificiels, dont l'orbitographie donne accès à la détermination du champ de gravité terrestre. Par conséquent, les variations temporelles du champ de gravité peuvent être reliées aux variations des paramètres d'orientation terrestre (via le tenseur d'inertie). Des progrès considérables ont été effectués ces dernières années dans la modélisation des effets des couches fluides. Et de nos jours, les mesures d'orientation terrestre dans l'espace obtenues par Interférométrie à très Longue Base (VLBI) ont une exactitude meilleure qu'une milliseconde de degré. Ceci permet de progresser dans la connaissance de la dynamique globale de la Terre. Mon travail de thèse a eu pour but d'utiliser la mesure du champ de gravité et de ses variations comme outil pour compléter la modélisation de la rotation terrestre. D'une part, en vue de l'utilisation des mesures du satellite GRACE, d'une grande précision, nous avons effectué des comparaisons précises des méthodes numériques d'intégration d'orbite de Cowell et d'Encke dans le logiciel GINS du GRGS. D'autre part, nous avons établi les liens théoriques entre les Paramètres d'Orientation Terrestres (EOP) et les variations des coefficients du champ de gravité. Ainsi, nous avons utilisé les données de variations temporelles des coefficients de degré 2 du géopotentiel pour en déduire leur influence sur la longueur du jour, le mouvement du pôle et la précession de l'équateur.

Page generated in 0.0508 seconds