Spelling suggestions: "subject:"channel activation"" "subject:"bhannel activation""
1 |
The cellular chloride channels CLIC1 and CLIC4 contribute to virus-mediated cell motilityStakaityte, G., Nwogu, N., Lippiat, J.D., Blair, G.E., Poterlowicz, Krzysztof, Boyne, James R., Macdonald, A., Mankouri, J., Whitehouse, A. 02 August 2018 (has links)
Yes / Ion channels regulate many aspects of
cell physiology, including cell proliferation,
motility, and migration, and aberrant expression
and activity of ion channels is associated with
various stages of tumor development, with K+
and Cl- channels now being considered the most
active during tumorigenesis. Accordingly,
emerging in vitro and preclinical studies have
revealed that pharmacological manipulation of
ion channel activity offers protection against
several cancers. Merkel cell polyomavirus
(MCPyV) is a major cause of Merkel cell
carcinoma (MCC), primarily due to the
expression of two early regulatory proteins
termed small and large tumour antigens (ST and
LT, respectively). Several molecular
mechanisms have been attributed to MCPyVmediated
cancer formation but thus far, no
studies have investigated any potential link to
cellular ion channels. Here we demonstrate that
Cl- channel modulation can reduce MCPyV STinduced
cell motility and invasiveness.
Proteomic analysis revealed that MCPyV ST
upregulates two Cl- channels; CLIC1 and CLIC4,
which when silenced, inhibit MCPyV STinduced
motility and invasiveness, implicating
their function as critical to MCPyV-induced
metastatic processes. Consistent with these data,
we confirmed that CLIC1 and CLIC4 are
upregulated in primary MCPyV-positive MCC
patient samples. We therefore, for the first time,
implicate cellular ion channels as a key host cell
factor contributing to virus-mediated cellular
transformation. Given the intense interest in ion
channel modulating drugs for human disease,
this highlights CLIC1 and CLIC4 activity as
potential targets for MCPyV-induced MCC. / BBSRC DTP studentship (BB/J014443/1) and Royal Society University Research Fellowship to JM (UF100419)
|
2 |
Critical elements contributing to the control of glycine receptor activation and allosteric modulationTodorovic, Jelena, 1981- 02 February 2011 (has links)
Glycine receptors (GlyRs) are ligand-gated ion channels (LGICs) that, along with other members of the cys-loop superfamily of receptors, mediate a considerable portion of fast neurotransmission in the central nervous system (CNS). GlyRs are pentameric channels, organized quasi-symmetrically around an ion-conducting pore. Opening of the integral ion pore depends on ligand binding and transduction of this binding signal to the channel gate.
Research presented in this dissertation describes a number of critical electrostatic interactions that play a role in conserving the closed-state stability of the receptor in the absence of ligand, ensuring that receptor activation occurs only upon neurotransmitter binding. These amino acids, aspartic acid at position 97 (D97), lysine 116 (K116), arginine 119 (R119) and arginine R131 (R131) are charged residues that interact with one another through electrostatic attraction. When D97 is replaced with any other amino acid this destabilizes the closed state of the channel and causes spontaneous GlyR channel opening. I show that restoration of this electrostatic interaction in GlyR bearing double mutations in which the charges are swapped (D97R/R119E and D97R/R131D) markedly decreases this spontaneous current. In addition, I investigate how these residues that interact at the interfaces between receptor subunits affect the efficacies of GlyR partial agonists. My work shows that the partial agonist taurine is converted into a full agonist at both D97R and R131D receptors.
Furthermore, I analyzed the structure of the more extracellular part of the transmembrane (TM) 2 segment that lines the ion channel pore, showing that it is unlikely that this fragment (stretching from T13’ to S18’) is constrained in a true alpha helical conformation. From this work, using disulfide trapping and whole cell electrophysiology, I conclude that a significant level of flexibility characterizes this part of the TM2 domain. This segment includes residue S267, previously shown to be significant for alcohol and anesthetic actions, as well as residue Q266 that, when mutated, produces a hyperekplexia-like phenotype. The range of movement of residues in this region may therefore play an important role not only in channel gating but also in how modulators of GlyR function exert their actions. / text
|
Page generated in 0.1035 seconds