Spelling suggestions: "subject:"channel reciprocity"" "subject:"bhannel reciprocity""
1 |
Underwater wireless optical communication system under reciprocal turbulenceGuo, Yujian 11 1900 (has links)
Underwater communication systems are in high demanded for subaquatic environment activities as the sea is an enormous and mostly unexplored place. The ten-meter long and few giga-bit per second range optical communication technique is feasible and has bright future compared to the mature but low data rate (few kilobits per second) acoustic technology and short distance (several meters) radio-frequency signaling schemes. The underwater wireless optical communication (UWOC) technique takes advantage of wide bandwidth, low attenuation effect in the visible range for multiple applications such as seafloor and offshore exploration, oil pipe control and maintenance, and pipeline leak detection. Nowadays, visible light-emitting diode (LED)-based and laser diode (LD)-based UWOC system are attractive and much related research is being conducted in the field.
However, the major challenges of developing UWOC systems are the attenuation, scattering and turbulence effects of the underwater environment. The temperature gradient, salinity gradient, and bubbles make underwater optical channel predictable challenging and degrade the optical beam propagating distance and quality. Most studies focus on the statistical distribution of intensity fluctuations in underwater wireless optical channels with random temperature and salinity variations as well as the presence of air bubbles.
In this thesis, we experimentally investigate the reciprocity nature of underwater turbulence caused by the turbidity, air bubbles, temperature variations, and salinity. Bit error rate measurement and statistical data analysis reveal the high reciprocal nature of turbulence that can be induced by the presence of bubbles, temperature, and salinity. The mitigation strategies for the different turbulence scenarios are discussed.
|
2 |
Études de la mise en oeuvre matérielle d’une transmission sans fil combinant retournement temporel et OFDM / Hardware implementation study of a wireless transmission combining time reversal and OFDMKokar, Yvan 15 November 2018 (has links)
L’essor spectaculaire des systèmes de communications sans fil a entrainé une forte augmentation du trafic des données qui ne devrait cesser de croître au cours des prochaines années. La future génération de réseaux cellulaires (5G) doit être capable de supporter cette croissance du trafic, tout en présentant une consommation énergétique réduite par rapport aux réseaux existants. Parmi les différentes technologies étudiées, le retournement temporel (RT) se présente comme un sérieux candidat pour répondre à ces contraintes. En effet, les nombreuses études théoriques sur le sujet ont montré que la combinaison du RT et de l’OFDM possède des performances intéressantes, notamment grâce à ses propriétés de compression temporelle et de focalisation spatiale. Cependant, les hypothèses prises dans les études théoriques ne sont pas toujours compatibles avec la réalisation pratique d’un tel système. L’objectif de ces travaux de thèse est donc de proposer des solutions aux hypothèses non réalistes, afin de les mettre en oeuvre dans la réalisation d’un prototype combinant RT et OFDM dans un contexte MISO. Dans un premier temps, la mise en oeuvre de l’estimation du canal au niveau de l’émetteur et de la synchronisation du système MISO RT-OFDM est étudiée. Ensuite, une solution de calibration au niveau de l’émetteur est proposée pour compenser le caractère non réciproque du canal de propagation vu de la bande de base. L’ensemble de ces solutions ainsi que les propriétés de focalisation du RT sont validés à partir de mesures expérimentales sur le prototype réalisé. Enfin, la mise en oeuvre du premier prototype de modulation spatiale à la réception utilisant le RT est présentée. / The spectacular growth of wireless communications systems has led to a sharp increase in data traffic, which should continue to grow over the next few years. The future generation of cellular networks (5G) must be able to support this growth of traffic, while presenting reduced energy consumption compared to existing networks. Among the different studied technologies, time reversal (TR) is a serious candidate to meet these constraints. Indeed, the numerous theoretical studies on the subject have shown that the combination of TR and OFDM has interesting performance, specifically thanks to its temporal compression and spatial focusing properties. However, the assumptions made in the theoretical studies are not always compatible with the practical implementation of a real system. The objective of this thesis is to propose solutions to unrealistic theoritical hypotheses, in order to implement them in a real hardware prototype combining TR and OFDM in a MISO context. First, the implementation of the channel estimation at the transmitter side, and the synchronization of the MISO TR-OFDM system is studied. Then, a calibration solution at the transmitter is proposed to compensate for the non-reciprocal nature of the baseband propagation channel. All these solutions as well as the focusing properties of TR are validated by experimental measurements using the developed prototype. Finally, the implementation of the first TR prototype of spatial modulation at the receiver side is presented.
|
Page generated in 0.064 seconds