• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimizing Channel Formation in PEG Maleimide Hydrogels

Kannadasan, Bakthavachalam 14 November 2023 (has links) (PDF)
Blood vessels including the arteries, veins, and capillaries are a critical and indispensable component of various organisms. Some studies estimate that if all the blood vessels present in our body are arranged in line, they would amount to a total length of approximately 60,000 miles. This distance is enough to circle the world two and a half times! In addition to being all pervasive, blood vessels perform certain key functions such as delivery of oxygen and nutrients to various tissues in the body. They also assist in the spread of diseases such as cancer. Therefore, it is important to study vessels from the point of view of tissue engineering applications. In this study, I have adapted the design of an open-source 3D printed device to create channels in Poly (ethylene glycol) Maleimide (PEG-Mal) hydrogels using the subtractive technique. The PEG-Mal hydrogels can be formed in various formulations to mimic the biophysical and biochemical properties of various tissues such as bone marrow, brain, and lung. These channels created within hydrogels can be easily perfused with physiologically relevant flow rates found in blood vessels and capillaries. Additionally, I have also optimized the hydrogel formulations to improve channel reproducibility. It was found that the number of arms of PEG-Mal contributed the most to channel reproducibility with higher success rates of channel formation in 8-arm gels when compared to 4-arm gels. Therefore, this project delineates the formation of simple in vitro channels in hydrogels which combines properties of the tissue specific extracellular matrix with hemodynamics. It is expected that such a system will find potential use in various tissue engineering and disease modeling studies.

Page generated in 0.0661 seconds