• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Buzené chaotické oscilátory / Driven chaotic oscillators

Pšeno, Daniel January 2011 (has links)
The theme of this masters thesis are driven chaotic oscillators. The aim of this project is show the various types of driven chaotic oscillator and propose mathematical model solutions using numerical methods. In the first part of this thesis are shown theory of chaos, history of chaos theory, chaotic systems and chaos quantifiers. Next is numerical analysis of differential equations second order by Runge-Kutta fourth order method. Next part contains circuit blocks and synthesis of oscillators. In next part are defined all types of oscillators. Parameters of analysis, equations, circuits and simulations are defined for each type of driven chaotic oscillators. In each subchapter is design electrical circuit. This circuit is simulated and some of them realized.
2

Stability and Control in Complex Networks of Dynamical Systems

Manaffam, Saeed 01 January 2015 (has links)
Stability analysis of networked dynamical systems has been of interest in many disciplines such as biology and physics and chemistry with applications such as LASER cooling and plasma stability. These large networks are often modeled to have a completely random (Erdös-Rényi) or semi-random (Small-World) topologies. The former model is often used due to mathematical tractability while the latter has been shown to be a better model for most real life networks. The recent emergence of cyber physical systems, and in particular the smart grid, has given rise to a number of engineering questions regarding the control and optimization of such networks. Some of the these questions are: How can the stability of a random network be characterized in probabilistic terms? Can the effects of network topology and system dynamics be separated? What does it take to control a large random network? Can decentralized (pinning) control be effective? If not, how large does the control network needs to be? How can decentralized or distributed controllers be designed? How the size of control network would scale with the size of networked system? Motivated by these questions, we began by studying the probability of stability of synchronization in random networks of oscillators. We developed a stability condition separating the effects of topology and node dynamics and evaluated bounds on the probability of stability for both Erdös-Rényi (ER) and Small-World (SW) network topology models. We then turned our attention to the more realistic scenario where the dynamics of the nodes and couplings are mismatched. Utilizing the concept of ε-synchronization, we have studied the probability of synchronization and showed that the synchronization error, ε, can be arbitrarily reduced using linear controllers. We have also considered the decentralized approach of pinning control to ensure stability in such complex networks. In the pinning method, decentralized controllers are used to control a fraction of the nodes in the network. This is different from traditional decentralized approaches where all the nodes have their own controllers. While the problem of selecting the minimum number of pinning nodes is known to be NP-hard and grows exponentially with the number of nodes in the network we have devised a suboptimal algorithm to select the pinning nodes which converges linearly with network size. We have also analyzed the effectiveness of the pinning approach for the synchronization of oscillators in the networks with fast switching, where the network links disconnect and reconnect quickly relative to the node dynamics. To address the scaling problem in the design of distributed control networks, we have employed a random control network to stabilize a random plant network. Our results show that for an ER plant network, the control network needs to grow linearly with the size of the plant network.
3

Improved Numerical And Numeric-Analytic Schemes In Nonlinear Dynamics And Systems With Finite Rotations

Ghosh, Susanta 01 1900 (has links)
This thesis deals with different computational techniques related to some classes of nonlinear response regimes of engineering interest. The work is mainly divided into two parts. In the first part different numeric-analytic integration techniques for nonlinear oscillators are developed. In the second part, procedures for handling arbitrarily large rotations are addressed and a few novel developments are reported in the process. To begin the first part, we have proposed an explicit numeric-analytic technique, based on the Adomian decomposition method, for integrating strongly nonlinear oscillators. Numerical experiments suggest that this method, like most other numerical techniques, is versatile and can accurately solve strongly nonlinear and chaotic systems with relatively larger step-sizes. It is then demonstrated that the procedure may also be effectively employed for solving two-point boundary value problems with the help of a shooting algorithm. This has been followed up with the derivation and numerical exploration of variants of a recently developed numeric-analytic technique, the multi-step transversal linearization (MTrL), in the context of nonlinear oscillators of relevance in engineering dynamics. A considerable generalization and improvement over the original form of a MTrL strategy is achieved in this study. Finally, we have used the concept of MTrL method on the nonlinear variational (rate) equation corresponding to a nonlinear oscillator and thus derive another family of numeric-analytic techniques, presently referred to as the multi-step tangential linearization (MTnL). A comparison of relative errors through the MTrL and MTnL techniques consistently indicate a superior quality of approximation via the MTrL route. In the second part of the thesis, a scheme for numerical integration of rigid body rotation is proposed using only rudimentary tensor analysis. The equations of motion are rewritten in terms of rotation vectors lying in same tangent spaces, thereby facilitating vector space operations consistent with the underlying geometric structure of rotation. One of the most important findings of this part of the dissertation is that the existing constant-preserving algorithms are not necessarily accurate enough and may not be ideally applicable to cases wherein numerical accuracy is of primary importance. In contrast, the proposed rotation-algorithms, the higher order ones in particular, are significantly more accurate for conservative rotational systems for reasonably long time. Similar accuracy is expected for dissipative rotational systems as well. The operators relating rotation variables corresponding to different tangent spaces are also investigated and this should provide further insight into the understanding of rotation vector parametrization. A rotation update is next proposed in terms of rotation vectors. This update, employed along with interpolation of relative rotations, gives a strain-objective and path independent finite element implementation of a geometrically exact beam. The method has the computational advantage of requiring considerably less nodal variables due to the use of rotation vector parametrization. We have proposed a new isoparametric interpolation of nodal quaternions for computing the rotation field within an element. This should be a computationally efficient alternative to the interpolation of local rotations. It has been proved that the proposed interpolation of rotation leads to the objectivity of strain measures. Several numerical experiments are conducted to demonstrate the frame invariance, path-independence and other superior aspects of the present approach vis-`a-vis the existing methods based on the rotation vector parametrization. It is emphasized that, in order to develop an objective finite element formulation, the use of relative rotation is not mandatory and an interpolation of total rotation variables conforming with the rotation manifold should suffice.

Page generated in 0.0705 seconds