Spelling suggestions: "subject:"chargecarrier mobilities"" "subject:"chargecarriers mobilities""
1 |
Broadband emission from organic-inorganic metal halides using luminescent organic A site ionsRahman, Mohammad Anikur 13 August 2024 (has links) (PDF)
Organic-inorganic metal halides represent a versatile platform for optoelectronic applications such as solar cells, LEDs, and photodetectors due to their tunable structures and properties. The ability to achieve broadband white-light emission through exciton self-trapping, tunable by controlling dimensionality with organic-metal halide combinations, makes them particularly exciting for light emission applications. This study explores a 1D cadmium halide hybrid system with the luminescent A-site ion, 1,2-bis(pyridine)butane, to achieve broadband white light emission. Further, this study investigates halide replacement effects, structural distortions, and dopant influences on the emission characteristics to achieve enhanced performance. Additionally, the synthesis and characterization of Mn and Sb-based metal halides using the same luminescent A-site ion are discussed to highlight their potential for advancing optoelectronic applications. Finally, this study demonstrates the importance of the space charge limited current (SCLC) method in studying the charge carrier density and mobilities using 1D copper halides.
|
2 |
Theoretical description of charge-transport and charge-generation parameters in single-component and bimolecular charge-transfer organic semiconductorsFonari, Alexandr 07 January 2016 (has links)
In this dissertation, we employ a number of computational methods, including Ab Initio, Density Functional Theory, and Molecular Dynamics simulations to investigate key microscopic parameters that govern charge-transport and charge-generation in single-component and bimolecular charge-transfer organic semiconductors.
First, electronic (transfer integrals, bandwidths, effective masses) and electron-phonon couplings of single-component organic semiconductors are discussed. In particular, we evaluate microscopic charge-transport parameters in a series of nonlinear acenes with extended pi-conjugated cores. Our studies suggest that high charge-carrier mobilities are expected in these materials, since large electronic couplings are obtained and the formation of self-localized polarons due to local and nonlocal electron-phonon couplings is unlikely. Next, we evaluate charge detrapping due to interaction with intra-molecular crystal vibrations in order to explain changes in experimentally measured electric conductivity generated by pulse excitations in the IR region of a photoresistor based on pentacene/C60 thin film. Here, we directly relate the nonlocal electron-phonon coupling constants with variations in photoconductivity.
In terms of charge-generation from an excited manifold, we evaluate the modulation of the state couplings between singlet and triplet excited states due to crystal vibrations, in order to understand the effect of lattice vibrations on singlet fission in tetracene crystal. We find that the state coupling between localized singlet and correlated triplet states is much more strongly affected by the dynamical disorder due to lattice vibrations than the coupling between the charge-transfer singlet and triplet states.
Next, the impact of Hartree-Fock exchange in the description of transport properties in crystalline organic semiconductors is discussed. Depending on the nature of the electronic coupling, transfer integrals and bandwidths can show a significant increase as a function of the amount of the Hartree-Fock exchange included in the functional. Similar trend is observed for lattice relaxation energy. It is also shown that the ratio between electronic coupling and lattice relaxation energy is practically independent of the amount of the Hartree-Fock exchange, making this quantity a good candidate for incorporation into tight-binding transport models. We also demonstrate that it is possible to find an amount of the Hartree-Fock exchange that recovers (quasi-particle) band structure obtained from a highly accurate G0W0 approach. Finally, a microscopic understanding of a phase transition in charge-carrier mobility from temperature independent to thermally activated in stilbene-tetrafluoro-tetracyanoquinodimethane crystal is provided.
|
3 |
Theoretical characterization of charge transport in organic molecular crystalsSánchez-Carrera, Roel S. 25 August 2008 (has links)
In this thesis, a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals has been developed. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. The nature of the intramolecular vibronic coupling in oligoacenes and oligothienoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. The electron interactions with optical phonons in oligoacene single crystals were investigated using both density functional theory and empirical force field methods. The low-frequency optical modes are found to play a significant role in dictating the temperature dependence of the charge-transport properties in the oligoacene crystals. The microscopic charge-transport parameters in the pentathienoacene, 1,4-diiodobenzene, and 2,6-diiodo-dithieno[3,2-<i>b</i>:2',3'-<i>d</i>]thiophene crystals were also investigated. It was found that the intrinsic charge transport properties in the pentathienoacene crystal might be higher than that in two benchmark high-mobility organic crystals, i.e., pentacene and sexithienyl. For 1,4-diiodobenzene crystal, a detailed quantum-mechanical study indicated that its high mobility is primarily associated with the iodine atoms. In the 2,6-diiododithieno[3,2-<i>b</i>:2',3'-<i>d</i>]thiophene crystal, the main source of electronic interactions were found along the π-stacking direction. For negatively charged carriers, the halogen-functionalized molecular crystals show a very large polaron binding energy, which suggests significantly low charge-transport mobility for electrons.
|
Page generated in 0.0787 seconds