• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of charge-collecting interlayers for single-junction and tandem organic solar cells

Shim, Jae Won 22 May 2014 (has links)
A hole-collecting interlayer layer for organic solar cells, NiO, processed by atomic layer deposition (ALD) was studied. ALD-NiO film offered a novel alternative to efficient hole-collecting interlayers in conventional single-junction organic solar cells. Next, surface modifications with aliphatic amine group containing polymers for use as electron-collecting interlayers were studied. Physisorption of the polymers was found to lead to large reduction of the work function of conducting materials. This approach provides an efficient way to provide air-stable low-work function electrodes for organic solar cells. Highly efficient inverted organic solar cells were demonstrated by using the polymer surface modified electrodes. Lastly, charge recombination layers of the inverted tandem organic solar cells were studied. Efficient charge recombination layers were realized by using the ALD and the polymer surface modification. The charge recombination layer processed by ALD provided enhanced electrical and barrier properties. Furthermore, the polymer surface modification on the charge recombination layers showed large work function contrast, leading to improved inverted tandem organic solar cells. The inverted tandem organic solar cells with the new charge recombination layer showed fill factor over 70% and power conversion efficiency over 8%.

Page generated in 0.091 seconds