• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NETWORKABLE TELEMETRY DATA RECORDERS BASED ON COTS COMPUTER TECHNOLOGY

Smith, Grant M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / Advances in several related technologies have brought together the previously incompatible goals of incorporating as much COTS technology as possible into the telemetry data recording architecture, providing operators with the kinds of real-time graphical data displays that they are accustomed to, and allowing these same data display systems to share data across a network and write to common database files accessible from centralized workstations.
2

NET-CENTRIFYING THE GOULD TA6000 OSCILLOGRAPH

Guadiana, Juan, Benitez, Jesus, Tiqui, Dwight 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Migrating analog architectures and equipments to network architectures is underway all across the globe. There is no doubt, a modern instrument must fit the network environment or simply will not be procured. Yet, funding constraints temper wholesale changes to net-centric technologies. The last analog stronghold in our data center is the oscillograph. Over 50 Gould TA 6000 Oscillographs reside at White Sands Missile Range. These are digital implementations of analog recorders, hence require analog signaling. Digital telemetry data (most common format) must be converted to analog to drive an oscillograph that converts analog back to digital to plot the data. The oscillograph’s interface board may be “hacked” by removing the Analog to Digital Converter (ADC) gaining direct access to the digital signal path. This idea was worth attempting as the prospect of replacing that many recorders with the newer network driven oscillographs is costly hence remote. This paper’s topic is the conversion of the hardware and a discussion on software issues. Though not pretty, it does preserve the large recorder investment for the time being. Issues with analog signaling, such as noise, drift and ground loops are gone. A commercial ethernet to digital adapter drives the new digital interface and transforms the recorder into an net-centric instrument.
3

TECHNIQUES FOR SYNCHRONIZING THERMAL ARRAY CHART RECORDERS TO VIDEO

Gaskill, David M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / Video tape is becoming more and more popular for storing and analyzing missions. Video tape is inexpensive, it can hold a two hour test, and it can be edited and manipulated by easily available consumer electronics equipment. Standard technology allows each frame to be time stamped with SMPTE code, so that any point in the mission can be displayed on a CRT. To further correlate data from multiple acquisition systems, the SMPTE code can be derived from IRIG using commercially available code converters. Unfortunately, acquiring and storing analog data has not been so easy. Typically, analog signals from various sensors are coded, transmitted, decoded and sent to a chart recorder. Since chart recorders cannot normally store an entire mission internally, or time stamp each data value, it is very difficult for an analyst to accurately correlate analog data to an individual video frame. Normally the only method is to note the time stamp on the video frame and unroll the chart to the appropriate second or minute, depending on the code used, noted in the margin, and estimate the frame location as a percentage of the time code period. This is very inconvenient if the telemetrist is trying to establish an on-line data retreival system. To make matters worse, the methods of presentation are very different, chart paper as opposed to a CRT, and require the analyst to shift focus constantly. For these reasons, many telemetry stations do not currently have a workable plan to integrate analog and video subsystems even though it is now generally agreed that such integration is ultimately desirable.
4

Universal Interface Between Telemetry Processors and Chart Recorders

Brimbal, Michel, Kelly, Fred 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / Chart recorders currently in use on telemetry ranges are connected to telemetry processors via a series of Digital to Analog Converters (DAC) systems. A new modular interface system receives data directly from the processor broadcast bus and distributes them to up to ten digital chart recorders. This interface is programmed from a computer to assign individual tags to each one of the display channels. This system eliminates DAC's and patch panels. It simplifies display system operation, speeds up transition from test to test and reduces maintenance costs.

Page generated in 0.0585 seconds