Spelling suggestions: "subject:"chebyshev, polinomios dde"" "subject:"chebyshev, polinomios dee""
1 |
Análise de estabilidade e convergência dos métodos Chebyshev-espectrais para problemas parabólicosTravessini, Fabiana January 2007 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Matemática e Computação Científica. / Made available in DSpace on 2012-10-23T07:18:50Z (GMT). No. of bitstreams: 1
235906.pdf: 730825 bytes, checksum: 25d5e053cb093d9fd481ef9ec6be7b74 (MD5) / Neste trabalho, apresentamos resultados de estabilidade e análise de convergência dos métodos Chebyshev-espectrais para equações diferenciais parciais parabólicas. Abordamos a teoria dos métodos Fourier-espectrais considerando apenas os resultados necessários ao desenvolvimento da teoria dos métodos Chebyshev-espectrais. A existência e unicidade de soluções foram obtidas através do método Faedo-Galerkin. Estabelecemos resultados de estabilidade e convergência de esquemas semi-discretos e totalmente discretos para as equações de advecção-difusão (uni e bidimensional) e do calor bidimensional. No caso de esquemas totalmente discretos, utilizamos o método implícito teta, com teta entre 1/2 e 1, para avançar no tempo. A taxa de convergência é espectral com relação ao espaço e polinomial no tempo (segunda ordem para teta pertencente a (1/2,1] e quarta ordem para teta=1/2).
|
2 |
Polinômios Palindrômicos com Zeros somente Reais /Fazinazzo, Eloiza do Nascimento January 2016 (has links)
Orientador: Vanessa Avansini Botta Pirani / Banca: Messias Meneguette Júnior / Banca: Fernando Rodrigo Rafaeli / Resumo: Neste trabalho foi realizado um estudo sobre o comportamento dos zeros de polinômios palindrômicos, com foco nos zeros reais. Condições necessárias e suficientes para que um polinômio palindrômico com coeficientes reais tenha somente zeros reais são estabelecidas. / Abstract: In this work is presented a study of the behavior of the zeros of palindromic polynomials, focusing on real zeros. Necessary and sufficient conditions for a palindromic polynomial with real coefficients has only real zeros are established. / Mestre
|
3 |
Dinamica não linear e controle de sistemas ideais e não-ideais periodicosPeruzzi, Nelson Jose 04 August 2005 (has links)
Orientadores: Jose Manoel Balthazar / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-04T04:06:35Z (GMT). No. of bitstreams: 1
Peruzzi_NelsonJose_D.pdf: 9438459 bytes, checksum: 1e95acc28fd5e0b87f7b964ca5a2f34e (MD5)
Previous issue date: 2005 / Resumo: Neste trabalho, apresenta-se um novo método numérico para aproximar matriz de transição de estados (STM) para sistemas com coeficientes periódicos no tempo. Este método, é baseado na expansão polinomial de Chebyshev, no método iterativo de Picard e na transformação de Lyapunov-Floquet (L-F) e aplica-se na análise da dinâmica e o controle de sistemas lineares e periódicos. Para o controle, aplicam-se dois projetos para eliminar o comportamento caótico de sistemas periódicos no tempo. O primeiro, usa o projeto de controle realimentado baseado na aplicação da transformação L-F, e o objetivo do controlador é conduzir a órbita do sistema para um ponto fixo ou para uma órbita periódica. No segundo, utiliza-se o controle não-linear para bifurcação, e o objetivo, neste caso, é modificar (atrasar ou eliminar) as características de uma bifurcação ao longo de sua rota para o caos. Como exemplo, aplicou-se, com sucesso, a técnica para análise e o controle da dinâmica: num pêndulo com excitação paramétrica, no oscilador de Duffing, no sistema de Rõssler e sistema pêndulo duplo invertido. O método, também, mostrou-se satisfatório na análise e controle de um sistema monotrilho não ideal / Abstract: In thiswork, a new numericalmethodto approximatestatetransitionmatrix(STM) for systems with time-periodic coefficients is presented. This method is based on the expansion Chebyshev polinomials,on the Picard iterationand on the Lyapunov-Floquet transfonnation(transfonnationL-F). It is applied to the dynamicalanalysis and control of linear periodic systems.For the control, two projectsto eliminatethe chaoticbehaviorof time periodic systemsare applied.The first one, uses the feedbackcontroldesignbased on the L-F transfonnation,and the controller'sobjectiveis to drive the orbit of the systemto an equilibriumpoint or a periodicorbit. fu the secondone, the non-lineal control for bifurcations used, and the objective,in this case, is to modify (to put back or to eliminate) the characteristicsof a bifurcation along its route to chaos. As example, the technique for dynamical analysis and control was applied, successfully, to a pendulum with parametric excitement, the Duffing's oscillator,the Rõssler's systemand the inverteddoublependulum The methodwas, also, to be shownsatisfactoryin the analysisand controlof a monorailnon-idealsystem / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
|
4 |
Combinações lineares de polinômios de Chebyshev e polinômios auto-recíprocos /Hancco Suni, Mijael January 2019 (has links)
Orientador: Vanessa Avansini Botta Pirani / Resumo: O presente trabalho tem como objetivo principal estudar o comportamento dos zeros de alguns tipos de polinômios auto-recíprocos gerados a partir de polinômios quaseortogonais de Chebyshev de ordens um e dois. Os zeros dos polinômios auto-recíprocos que construímos estão ligados aos zeros de polinômios quase-ortogonais. Os polinômios quaseortogonais podem ser obtidos a partir de uma sequência de polinômios ortogonais. Neste trabalho, usaremos os polinômios de Chebyshev para obter polinômios quase-ortogonais e usaremos resultados sobre o comportamento de zeros desses polinômios para obter informações sobre o comportamento dos zeros de polinômios auto-recíprocos. / Abstract: The main objective of this work is to study the behavior of the zeros of some classes of self-reciprocal polynomials related to Chebyshev quasi-orthogonal polynomials of order one and two. The zeros of self-reciprocal polynomials are linked to the zeros of quasiorthogonal polynomials, which can be obtained from a sequence of orthogonal polynomials. In this work we use the Chebyshev polynomials to obtain classes of quasi-orthogonal polynomials and from results on the behavior of their zeros, we obtain information about the zeros of some classes of self-reciprocal polynomials. / Mestre
|
Page generated in 0.0817 seconds