• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relevance of Multi-Objective Optimization in the Chemical Engineering Field

Cáceres Sepúlveda, Geraldine 28 October 2019 (has links)
The first objective of this research project is to carry out multi-objective optimization (MOO) for four simple chemical engineering processes to clearly demonstrate the wealth of information on a given process that can be obtained from the MOO instead of a single aggregate objective function. The four optimization case studies are the design of a PI controller, an SO2 to SO3 reactor, a distillation column and an acrolein reactor. Results that were obtained from these optimization case studies show the benefit of generating and using the Pareto domain to gain a deeper understanding of the underlying relationships between the various process variables and the different performance objectives. In addition, an acrylic acid production plant model is developed in order to propose a methodology to solve multi-objective optimization for the two-reactor system model using artificial neural networks (ANNs) as metamodels, in an effort to reduce the computational time requirement that is usually very high when first-principles models are employed to approximate the Pareto domain. Once the metamodel was trained, the Pareto domain was circumscribed using a genetic algorithm and ranked with the Net Flow method (NFM). After the MOO was carry out with the ANN surrogate model, the optimization time was reduced by a factor of 15.5.

Page generated in 0.1901 seconds