• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular similarity and xenobiotic metabolism

Adams, Samuel E. January 2010 (has links)
MetaPrint2D, a new software tool implementing a data-mining approach for predicting sites of xenobiotic metabolism has been developed. The algorithm is based on a statistical analysis of the occurrences of atom centred circular fingerprints in both substrates and metabolites. This approach has undergone extensive evaluation and been shown to be of comparable accuracy to current best-in-class tools, but is able to make much faster predictions, for the first time enabling chemists to explore the effects of structural modifications on a compound’s metabolism in a highly responsive and interactive manner. MetaPrint2D is able to assign a confidence score to the predictions it generates, based on the availability of relevant data and the degree to which a compound is modelled by the algorithm. In the course of the evaluation of MetaPrint2D a novel metric for assessing the performance of site of metabolism predictions has been introduced. This overcomes the bias introduced by molecule size and the number of sites of metabolism inherent to the most commonly reported metrics used to evaluate site of metabolism predictions. This data mining approach to site of metabolism prediction has been augmented by a set of reaction type definitions to produce MetaPrint2D-React, enabling prediction of the types of transformations a compound is likely to undergo and the metabolites that are formed. This approach has been evaluated against both historical data and metabolic schemes reported in a number of recently published studies. Results suggest that the ability of this method to predict metabolic transformations is highly dependent on the relevance of the training set data to the query compounds. MetaPrint2D has been released as an open source software library, and both MetaPrint2D and MetaPrint2D-React are available for chemists to use through the Unilever Centre for Molecular Science Informatics website.
2

Návrh efektivní generické molekulární reprezentace / Návrh efektivní generické molekulární reprezentace

Škoda, Petr January 2014 (has links)
The screening of chemical libraries is an important step in the drug discovery process. The existing chemical libraries contain up to millions of compounds. As the screening at such scale is expensive, the virtual screening is often utilized. There exist several variants of virtual screening and ligand- based virtual screening is one of them. It utilizes the similarity of screened chemical compounds to known compounds. Besides the employed similarity measure, another aspect greatly influencing the performance of ligand-based virtual screening is the chosen chemical compound representation. In this thesis, we introduce a fragment-based representation of chemical compounds. Our representation utilizes fragments to represent a compound. Each fragment is represented by its physicochemical descriptors. The representation is highly parameterizable, especially in the area of physicochemical descriptors selection and application. In order to test the performance of our method, we utilized an existing framework for virtual screening benchmarking. The results show that our method is comparable to the best existing approaches and on some datasets it outperforms them.
3

Extension of Similarity Functions and their Application toChemical Informatics Problems

Wood, Nicholas Linder January 2018 (has links)
No description available.

Page generated in 0.1034 seconds