• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial Interactions: Prediction, Characterization, and Spatial Context

Dyckman, Samantha Katherine January 2021 (has links)
Thesis advisor: Babak Momeni / Microbial communities are complex networks comprised of multiple species that are facilitating and inhibiting one another (as well as themselves). Currently, we lack an understanding of what mechanisms drive coexistence within these communities. We aimed to remedy this by studying the dynamics of coexisting communities, focusing on the complexity of their interaction networks, the impact of spatial dynamics, and the interplay of facilitating and inhibiting interactions. These limitations in our understanding prevent the furtherment of designing intentional communities for bioremediation, maintenance of healthy microbiota, and other functional communities. To better understand these microbial dynamics, we chose to address the problem from two fronts: computational modeling and exploring dynamics of cocultures. Through our 1-D model, spatial structure fostering more coexistence – especially when facilitation is present. For the coexistence assays, we determined that contact-dependent growth inhibition is a density dependent mechanism, and the use of a Tn-Seq mutant library to predict species interactions is possible, but needs further optimization to reconcile density dependent effects of interactions. / Thesis (MS) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.

Page generated in 0.0788 seconds