• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A preformulation study of pyridoxal hydrochloride for solid dosage form desigh and development

Durig, Thomas. 08 1900 (has links)
A Dissertation Submitted to the Faculty of Medicine, University of the Witwatersrand, Johannesburg for the Degree of Master of Pharmacy. Johannesburg, August 1991 / In this dissertation physicochemical properties of the Bs vitamer, pyridoxal hydrochloride (PL HC1), are investigated with the aim of generating the necessary profile for the rational development of a stable, safe and effective formulation containing this drug. Recent research suggests that administration of PL HC1 may be particularly effective in raising the depleted intracellular pyridoxal phosphate levels found in many asthmatics treated with theophylline. The solubility characteristics of PL HC1 suggest that its absorption and bioavailability should not be problematic / IT2018
2

The Role of Teaching Models and Chemical Representations in Developing Students' Mental Models of Chemical Phenomena

Chittleborough, Gail Diane January 2004 (has links)
Chemical representations play a vital part in the teaching and learning of chemistry. The aim of this research was to investigate students’ understanding of chemical representations and to ascertain the influence of chemical representations on students’ developing mental models of chemical phenomena. Three primary threads flowing through the thesis are models, representations and learning. Each thread was found to play a vital part in students’ learning of chemical content, in their learning of the scientific process and in their learning about the process of learning itself. This research with students from Year 8 to first year university level comprised four studies that provide comparisons between ages, abilities, learning settings and teaching and learning approaches. Students’ modelling ability was observed to develop and improve through instruction and practice and usually coincided with an improvement in their understanding of chemical concepts. While students were observed to actively use models to make predictions and test ideas, some were not aware of the predictive nature of models when asked about it. From the research, five characteristics of scientific models have been identified: scientific models as multiple representations, scientific models as exact replicas, scientific models as explanatory tools, how scientific models are used, and the dynamic nature of scientific models. A theoretical framework relating the four types of models - teaching, scientific, mental and expressed - and a typology of models that highlights the significant attributes of models, support the research results. The data showed that students’ ability to describe the role of the scientific model in the process of science improved with their increasing age and maturity. / The relationship between the three levels of chemical representation of matter - the macroscopic level, the sub-microscopic level and the symbolic level - revealed some complexities concerning the representational and theoretical qualities and the reality of each level. The research data showed that generally most students had a good understanding of the macroscopic and symbolic levels of chemical representation of matter. However, students’ understanding of the sub-microscopic level varied, with some students being able to spontaneously envisage the sub- microscopic view while for others their understanding of the sub-microscopic level of chemical representation was lacking. To make sense of the sub-microscopic level, students’ appreciation of the accuracy and detail of any scientific model, or representation upon which their mental model is built, depended on them being able to distinguish reality from representation, distinguish reality from theory, know what a representation is, understand the role of a representation in the process of science, and understand the role of a theory in the process of science. In considering learning, the importance of an individual’s modelling ability was examined alongside the role of chemical representations and models in providing clear and concise explanations. Examining the links forged between the three levels of chemical representation of matter provided an insight into how students were learning and understanding chemical concepts. Throughout this research, aspects of students’ metacognition and intention were identified as being closely related to their development of mental models. / The research identified numerous factors that influenced learning, including internal factors such as students’ prior chemical and mathematical knowledge, their modelling ability and use of chemical representations, motivation, metacognitive ability and time management as well as external factors such as organisation, assessment, teaching resources, getting feedback and good explanations. The choice of learning strategies by students and instructors appeared to be influenced by those factors that influenced learning. Feedback to students, in the form of discussion with classmates, online quizzes and help from instructors on their understanding was observed to be significant in promoting the learning process. Many first year university non-major chemistry students had difficulties understanding chemical concepts due to a limited background knowledge in chemistry and mathematics. Accordingly, greater emphasis at the macroscopic level of representation of matter with contextual references is recommended. The research results confirmed the theoretical construct for learning chemistry - the rising iceberg - that suggests all chemistry teaching begins at the macroscopic level, with the sub-microscopic and symbolic levels being introduced as needed. More of the iceberg becomes visible as the students’ mental model and depth of understanding increases. In a variety of situations, the changing status of a concept was observed as students’ understanding in terms of the intelligibility, plausibility and fruitfulness of a concept developed. / The research data supported four aspects of learning - epistemological, ontological, social affective and metacognitive - as being significant in the students’ learning and the development of their mental models. Many university students, who are mature and are experienced learners, exhibited strong rnetacognitive awareness and an intentional approach to learning. It is proposed that the intentional and metacognitive learning approaches and strategies could be used to encourage students to be more responsible for their own learning.
3

Grade 10 physical science students' reasoning about basic chemical phenomena at submicroscopic level

Nyanhi, Musekiwa Gift 10 1900 (has links)
The study investigated South African Grade 10 Physical science learners’ reasoning about basic chemical phenomena at sub-microscopic level. The study adopted a non-experimental, exploratory and descriptive method and was principally guided by the ex-post facto research design using a concurrent embedded strategy of mixed qualitative and qualitative approach. A total of 280 grade 10 physical science learners in their intact classes and six of their teachers participated in the study. The 280 physical science learners comprised of 100 students from two top performing schools, 100 learners from two middle performing schools and the last 80 learners were drawn from two poor performing schools in Gauteng Department of Education’s Tshwane North District. A two-tier multiple-choice paper and pencil Test of Basic Chemistry Knowledge (TBCK) based on the three levels of chemical representation of matter was administered to the 280 physical science learners in their Grade 11 first term to collect both quantitative and qualitative data. In addition to the TBCK, focus group discussions (FGDs) with learners, teacher interviews and document analysis were used to triangulate data. The results revealed that most Grade 10 learners find it easy to identify pure elements and the solid state but find it difficult to negotiate between the three levels (macroscopic, sub-microscopic and symbolic) of chemical representation of matter. It became clear that learners experienced more difficulties in the concepts of basic solutions, acidic solutions, concentration and ionic compounds in solution. It also became apparent that some learners could not tell differences between a diatomic element and a compound indicating conceptual problems when they reason at particle level, and as a result they could not identify a mixture of elements. The results also indicated that the concepts of pure compounds and mixtures of compounds were not easy to comprehend as most learners took a pure compound for a mixture of atoms and a mixture of compounds for a mixture of elements. It is therefore concluded that learners find it difficult negotiating the three levels of chemical representation of matter. However, it is not clear whether the misconceptions the learners showed could be completely attributable to the concepts involved or the nature of the sub-microscopic models that were used in the test as it was also revealed that most teachers were not using sub-microscopic representations during instruction to enable learners to think at particle level. Furthermore, justifications to the multiple-choice tasks revealed lack of understanding of basic chemical concepts as well as language problems amongst learners as they could not clearly express their reasoning. Based on the results, some recommendations to educators, chemistry curriculum planners, teacher education and the chemistry education research field are suggested. / Science and Technology Education / D. Phil. ((Philosophy in Mathematics, Science and Technology Education)
4

Grade 10 physical science students' reasoning about basic chemical phenomena at submicroscopic level

Nyanhi, Musekiwa Gift 10 1900 (has links)
The study investigated South African Grade 10 Physical science learners’ reasoning about basic chemical phenomena at sub-microscopic level. The study adopted a non-experimental, exploratory and descriptive method and was principally guided by the ex-post facto research design using a concurrent embedded strategy of mixed qualitative and qualitative approach. A total of 280 grade 10 physical science learners in their intact classes and six of their teachers participated in the study. The 280 physical science learners comprised of 100 students from two top performing schools, 100 learners from two middle performing schools and the last 80 learners were drawn from two poor performing schools in Gauteng Department of Education’s Tshwane North District. A two-tier multiple-choice paper and pencil Test of Basic Chemistry Knowledge (TBCK) based on the three levels of chemical representation of matter was administered to the 280 physical science learners in their Grade 11 first term to collect both quantitative and qualitative data. In addition to the TBCK, focus group discussions (FGDs) with learners, teacher interviews and document analysis were used to triangulate data. The results revealed that most Grade 10 learners find it easy to identify pure elements and the solid state but find it difficult to negotiate between the three levels (macroscopic, sub-microscopic and symbolic) of chemical representation of matter. It became clear that learners experienced more difficulties in the concepts of basic solutions, acidic solutions, concentration and ionic compounds in solution. It also became apparent that some learners could not tell differences between a diatomic element and a compound indicating conceptual problems when they reason at particle level, and as a result they could not identify a mixture of elements. The results also indicated that the concepts of pure compounds and mixtures of compounds were not easy to comprehend as most learners took a pure compound for a mixture of atoms and a mixture of compounds for a mixture of elements. It is therefore concluded that learners find it difficult negotiating the three levels of chemical representation of matter. However, it is not clear whether the misconceptions the learners showed could be completely attributable to the concepts involved or the nature of the sub-microscopic models that were used in the test as it was also revealed that most teachers were not using sub-microscopic representations during instruction to enable learners to think at particle level. Furthermore, justifications to the multiple-choice tasks revealed lack of understanding of basic chemical concepts as well as language problems amongst learners as they could not clearly express their reasoning. Based on the results, some recommendations to educators, chemistry curriculum planners, teacher education and the chemistry education research field are suggested. / Science and Technology Education / D. Phil. ((Philosophy in Mathematics, Science and Technology Education)

Page generated in 0.0703 seconds