Spelling suggestions: "subject:"semichemical active fluid"" "subject:"microchemical active fluid""
1 |
Soluções fracas para um sistema de equações de Oberbeck-BoussinesqLima, Fabiana Goulart de January 2002 (has links)
Neste trabalho, utilizando o método espectral de Galerkin, provamos a existência de soluções fracas (quando a dimensão n é maior que 2) e existência e unicidade de soluções fracas (quando a dimensão é 2) para um sistema de equações diferenciais parciais que descrevem o movimento de um fluido quimicamente ativo em um domínio limitado em Rn, n 2≥2. / In this work, by using the spectral Galerkin method, we prove the existence of weak solutions (when the dimension n is great than 2) and existence and uniqueness of weak solutions (when the dimension is 2) for a system of partial differential equations that describes the motion of a chemical active fluid in a bounded domain in Rn, n≥2.
|
2 |
Soluções fracas para um sistema de equações de Oberbeck-BoussinesqLima, Fabiana Goulart de January 2002 (has links)
Neste trabalho, utilizando o método espectral de Galerkin, provamos a existência de soluções fracas (quando a dimensão n é maior que 2) e existência e unicidade de soluções fracas (quando a dimensão é 2) para um sistema de equações diferenciais parciais que descrevem o movimento de um fluido quimicamente ativo em um domínio limitado em Rn, n 2≥2. / In this work, by using the spectral Galerkin method, we prove the existence of weak solutions (when the dimension n is great than 2) and existence and uniqueness of weak solutions (when the dimension is 2) for a system of partial differential equations that describes the motion of a chemical active fluid in a bounded domain in Rn, n≥2.
|
3 |
Soluções fracas para um sistema de equações de Oberbeck-BoussinesqLima, Fabiana Goulart de January 2002 (has links)
Neste trabalho, utilizando o método espectral de Galerkin, provamos a existência de soluções fracas (quando a dimensão n é maior que 2) e existência e unicidade de soluções fracas (quando a dimensão é 2) para um sistema de equações diferenciais parciais que descrevem o movimento de um fluido quimicamente ativo em um domínio limitado em Rn, n 2≥2. / In this work, by using the spectral Galerkin method, we prove the existence of weak solutions (when the dimension n is great than 2) and existence and uniqueness of weak solutions (when the dimension is 2) for a system of partial differential equations that describes the motion of a chemical active fluid in a bounded domain in Rn, n≥2.
|
Page generated in 0.1103 seconds