• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalyzed Hydrogen Release from BH- and BNH-based Hydrogen Storage Materials

Mostajeran, Mehdi January 2017 (has links)
In order to reduce our ties to fossil-based energy and mitigate the undeniable impacts of climate change on the environment, remarkable efforts have been directed over the last 4 decades toward developing renewable energy sources such as solar, wind, geothermal, etc. For transportation applications biofuels, electricity and hydrogen all offer potential solutions although current usage is still largely linked to fossil fuels (bio-based ethanol-gasoline mixtures, power generation for battery recharging, and steam reforming for hydrogen production). While hydrogen offers the greatest potential in terms of energy density, its poor volumetric density (0.01 MJ/L at RT) requires costly compression and pressurized storage. When future technology finally allows for efficient hydrogen release from water splitting, we need to have optimal solutions in place for hydrogen storage. One promising solution is chemical hydrogen storage in which thermolysis of a chemical precursor affords a controlled hydrogen release that can then be reversed in an off-board regeneration step. With a focus on maximum gravimetric hydrogen storage, various BNH compounds have been shown to be promising chemical hydrogen storage precursors. In this Thesis we summarize the state of the art in B-N-H hydrogen storage compounds (Chapter 1) and then investigate several new chemical hydrogen storage solutions with a focus on portable power generation. In the first project (Chapter 2) we sought to prepare a robust, base-metal borohydride hydrolysis catalyst for use in a custom hydrogen generator designed to use the reaction heat to help separate the borate spent fuel. Active ‘reverse opal’ layered double hydroxide (LDH) catalysts were prepared and tested. While the classical Ni-Mg-Al LDH released 3.4 equiv. of hydrogen at 50 °C in 150 minutes, the polystyrene templated Ni-Mg-Al catalyst released 4 equiv. of hydrogen with a higher initial rate under the same reaction conditions. The long-term objective of this project was to test these catalysts in fuel cells for underground mine forklifts with our industry collaborator (Kingston Process Metallurgy Inc.). In the next three chapters, the synthesis and hydrogen release properties of ammine metal borohydrides [M(BH4)m(NH3)n, AMBs] were investigated. As promising hydrogen storage materials with high hydrogen content (10-15 wt%), AMBs can access lower hydrogen release temperatures resulting from the combination of protic (N-Hδ+) and hydridic (B-Hδ-) hydrogens. While AMBs also do not suffer from diborane formation that plagues thermolysis of metal borohydrides, hydrogen release is often accompanied by small concentrations of ammonia that deactivate the fuel cell catalyst. Our objective for this work was to identify base metal catalysts that could suppress ammonia formation by further reducing the energy barrier to H2 release. In Chapter 3 our studies of the solution synthesis of AMB materials (Y, La, Zn, etc.) in coordinating solvents such as tetrahydrofuran (thf) and diethyl ether revealed the unexpected formation of ammonia-borane (H3NBH3, AB). It was shown that while the amounts of produced AB correlate with the Zhang electronegativity for the s- and p-block metals, ionic radius is a stronger determining factor for the transition metals. It was also observed that reducible metals such as Ti and V produce large amounts of AB while Zn produced the least. This knowledge was then used in Chapter 4 to prepare pure samples of the Y and La complexes, M(BH4)3(NH3)4 that were characterized by thermal analysis (TGA-MS), powder X-ray diffraction, FT-IR and 11B and 1H MAS NMR spectroscopy. Furthermore, a series of base-metal nanoparticle catalysts, prepared using a novel route from MCl2 and liquid hexylamine-borane, was shown to suppress ammonia formation from these Y and La AMBs. Immobilizing 5 wt.% of Co NPs on Y(BH4)3(NH3)4 and 5 wt.% of Fe NPs on La(BH4)3(NH3)4 resulted in reduction of ammonia release by three- and fourfold, respectively. In Chapter 5 the attempted solution synthesis of Zn(BH4)2(NH3)2 revealed complications due to preferred formation of MIZn(BH4)3 [instead of Zn(BH4)2] from the reaction of ZnCl2 and MIBH4 (MI= Li, Na, K). As a result, the mixed-metal AMB, KZn(BH4)3(NH3)n was prepared and characterized. Although the effects of both heterogeneous and homogeneous catalysts were not as pronounced as those for Y and La, using 5 wt.% FeNPs resulted in fourfold reduction in the amount of released ammonia which led to a purer hydrogen stream (98.9 mol%) compared to the uncatalyzed thermolysis (97.0 mol%). Finally, in Chapter 6 our results are considered vs. the current state of the art and suggestions are made for further investigations.
2

Etude de la stabilité thermique de l’ammoniaborane : de la synthèse aux caractérisations thermogravimétriques et spectroscopiques / Thermal stability study of ammonia borane : from synthesis to thermogravimetric and spectroscopy charaterizations

Petit, Jean-Fabien 24 March 2015 (has links)
Les matériaux à base de bore et d'azote présentent un grand potentiel et donc un grand intérêt pour des applications énergétique et en particulier dans le domaine du stockage de l'hydrogène. L'ammoniaborane (NH3BH3) s'est révélé, au milieu des années 2000, comme un matériau avec une grande capacité gravimétrique (19,6%m) et volumétrique (140 g.L-1) en hydrogène. Au cours de l'analyse de la bibliographie nous nous sommes aperçus que tous les travaux sur l'ammoniaborane portés sur sa déstabilisation thermique, nous avons donc choisi une approche originale en nous concentrant sur la stabilisation thermique de l'ammoniaborane. Mon travail de thèse a consisté à revisiter la synthèse de l'ammoniaborane pour en dégager les meilleurs paramètres de synthèse (précurseurs de bore et d'azote, solvant et température) possible en vue d'obtenir une température de début de déshydrogénation la plus haute possible. En effet, en faisant varier certains précurseurs nous avons pu observer une modification de la température de début de déshydrogénation et donc de la stabilité thermique de l'ammoniaborane. Après avoir déterminé les meilleurs paramètres de synthèses nous avons entrepris une étude thermique et thermolytique afin de comprendre quel(s) facteur(s) étai(en)t à l'origine de cette différence de stabilisation. Pour cela nous avons effectué une étude d'analyse thermogravimétrique couplée à un spectromètre de masse afin de déterminer le mécanisme de déshydrogénation et une étude en conditions isotherme afin de vérifier la stabilité des ammoniaboranes que nous avons synthétisés. Dans un troisième temps nous avons effectué une étude spectroscopique de surface, grâce à l'XPS et du matériau dans son ensemble, grâce à la RMN-MAS à l'état solide des noyaux de bore 11 et d'azote 15. Ces études nous ont permis de déterminer un nouveau mécanisme de déshydrogénation de l'ammoniaborane pour des expériences en conditions isotherme. / Boron and nitrogen based-materials offer a great potential and interest in energy applications and in particular in the field of hydrogen storage. The ammonia borane (NH3BH3) was revealed, in the mid 2000s, as a material with high gravimetric (19.6%m) and volumetric (140 g.L-1) capacities in hydrogen. During the analysis of the literature we realized that all studies on ammonia borane treated on its thermal destabilization, so we chose an original approach by focusing our work on the thermal stabilization of ammonia borane. My thesis work focused on the synthesis of ammonia borane to identify the best synthesis parameters (boron and nitrogen precursors, solvent, and temperature) for the highest possible onset temperature. Indeed, by varying some precursors we observed a change in the onset temperature and therefore in the thermal stability of the ammonia borane. After determining the best synthesis parameters we undertook thermal and thermolytic studies to understand which factor(s) is(are) responsible for the stabilization's differences. For this, we performed thermogravimetric analysis coupled to mass spectrometer studies to determine the dehydrogenation mechanism and studies in isothermal conditions to verify the stability of our ammonia boranes. Thirdly we performed a spectroscopic study by XPS and solid state MAS-NMR of boron 11 and nitrogen 15. These studies allowed us to identify a new mechanism of dehydrogenation of ammonia borane for experiments in isothermal conditions.
3

Electronic properties study on hydrazines and nitriles complexed by Lewis acids. Towards chemical hydrogen storage. / Étude des propriétés électroniques des hydrazines et nitriles complexés par des acides de Lewis. Vers le stockage chimique d'hydrogène.

Torres Escalona, Javier 27 November 2017 (has links)
Dans la problématique de l'utilisation de nouvelles énergies non polluantes, l'hydrogène est l'un des principaux carburants verts du futur. Les dérivés d'hydrazine et de borane sont potentiellement intéressants pour le stockage chimique de l'hydrogène. Les complexes entre hydrazines ou nitriles avec des boranes ou des alanes sont à la base de cette étude. Ces composés ont été synthétisés afin d'étudier leur structure électronique avant et après la création de la liaison entre les acides et les bases de Lewis. La spectroscopie photoélectronique à rayonnement UV (UV-SPE) est utilisée comme outil principal de caractérisation fournissant des énergies d'ionisation (IE). L’interprétation des résultats expérimentaux est supportée par des calculs quantiques comme ΔSCF + TD-DFT, OVGF, P3 et SAC-CI. Des simulations et des expériences par Flash Vacuum Thermolysis (FVT) ont été effectuées, portant sur l’élimination d'hydrogène à partir de dérivés d'hydrazine borane. / Within the problematic of the use of new non-polluting energies, hydrogen is one of the main green fuels of the future. Hydrazine borane derivatives are potentially interesting chemical hydrogen storage materials. Complexes between hydrazines or nitriles with boranes or alanes are the basis of this study. These compounds were synthesized in order to study their electronic structure before and after creation of the bond between the Lewis acids and bases. Ultraviolet Photoelectron Spectroscopy (UV-PES) is used as a main characterization tool, providing Ionization Energies (IE). The interpretation of the experimental results is supported by Quantum Chemical Calculations as ΔSCF+TD-DFT, OVGF, P3 and SAC-CI methods. Simulations and experiments by Flash Vacuum Thermolysis (FVT) were carried out on hydrogen release from hydrazine borane derivatives.

Page generated in 0.0937 seconds