• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some aspects of the nature of eutectics

Hogan, Leonard McNamara. Unknown Date (has links)
No description available.
2

<b>Smart Energetics: Solid Propellant Combustion Theory and Flexoelectric Energetic Materials</b>

Thomas Anson Hafner (17474289) 29 November 2023 (has links)
<p dir="ltr">Smart energetics are energetic materials (propellants, explosives, and pyrotechnics) with on/off capabilities or in real time modification of combustion behavior. Solid propellants are known for many positive qualities such as their simplicity and low cost but also their glaring lack of active burning rate control. Previous proposed methods of active control of solid propellants include pintle valve actuation and electronically controlled solid propellants, however there is a need for improved methods. Surface area modification is one proposed method and can be employed in real time to affect the burning behavior of solid propellants. To this end, derivations were conducted regarding a slot adjacent to a solid propellant strand and the pressure and slot width threshold conditions that allow for burning to occur inside of the adjacent slot. The derivations considered different modes of combustion (convective and conductive) and combustion threshold conditions. The derivations resulted in five equations that were curve fit to existing literature for validation resulting in high R squared values. A demonstration of the creation of an adjacent slot with a piezoelectric actuator, a mini case study of the adjacent slot proposal, and a discussion of methods to create an adjacent slot as well as the effect of propellant selection on convective burning in slots were all done to follow up on the promising results of the theoretical work. </p><p dir="ltr">Furthermore, flexoelectricity is the coupling between strain gradient and charge generation and has been considered to modify the combustion characteristics of energetic materials. This work measured the flexoelectric properties of polymers and their associated energetic composites including polyvinylidene fluoride (PVDF), micron aluminum (μAl)/PVDF, nano aluminum (nAl)/PVDF, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)), nAl/P(VDF-TrFE), poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)), μAl/P(VDF-HFP), hydroxylterminated polybutadiene (HTPB), ammonium perchlorate (AP)/HTPB, μAl/AP/HTPB, polytetrafluoroethylene (PTFE), and polydimethylsiloxane (PDMS). The measurements made on PVDF, μAl/PVDF, P(VDF-TrFE), P(VDF-HFP), PTFE, and PDMS were all within or near to the range of measurements from the literature. Novel measurements were made on nAl/PVDF, nAl/P(VDF-TrFE), μAl/P(VDF-HFP), HTPB, AP/HTPB, and μAl/AP/HTPB. Additionally, the effect of porosity, particle additions (μAl, nAl, or AP), and manufacturing method (3D printing, casting, different 3D printers, etc.) on the flexoelectric performance of these samples was investigated. It was found that large pores (millimeter scale) added via the infill pattern of 3D printed PVDF and Al/PVDF samples decreased the effective flexoelectric effect relative to the near full density control samples. This contrasts with previous work showing that adding small (micron scale) pores increases the flexoelectric performance of various polymers and energetic materials. Mixed results were found with respect to the effect of particle additions (μAl, nAl, or AP) on the flexoelectricity of a variety of materials. This may be explained by the competing effect of particle additions adding extra local strain gradients which amplify flexoelectricity but also replace some polymer binder material (PVDF, P(VDF-TrFE), P(VDF-HFP), and HTPB) with the particle additions (μAl, nAl, and AP) which are typically less flexoelectric. Our work demonstrates that manufacturing method does affect the flexoelectric properties of polymers and energetic composites. Lastly, our flexoelectric measurements of P(VDF-HFP) and PTFE may help explain accidents related to Magnesium-Teflon®-Viton® (MTV) flare systems that have, in many cases, been attributed to electrostatic discharge.</p>
3

COMPUTATIONAL PREDICTION AND VALIDATION OF A POLYMER REACTION NETWORK

Lawal Adewale Ogunfowora (17376214) 13 November 2023 (has links)
<p dir="ltr">Chemical reaction networks govern polymer degradation and contain critical design information regarding specific susceptibilities, degradation pathways, and degradants. However, predicting reaction pathways and characterizing complete reaction networks has been hindered by high computational costs because of the vast number of possible reactions at deeper levels of network exploration. In the first section, an exploration policy based on Dijkstra's algorithm on YARP using the reaction rate as a cost function was shown to provide a tractable means of exploring the pyrolytic degradation network of a representative commodity polymer, PEG. The resulting network is the largest reported to date for this system and includes pathways out to all degradants observed in earlier mass spectrometry studies. The initial degradation pathway predictions were validated by complementary experimental analysis of pyrolyzed PEG samples by ESI-MS. These findings demonstrate that reaction network characterization is reaching sufficient maturity to be used as an exploratory tool for investigating materials degradation and interpreting experimental degradation studies.</p>
4

CHARACTERIZING MESOSCALE FEATURES IN PBX 9501 WITH WITNESS PLATES

Austin David Koeblitz (18359919) 12 April 2024 (has links)
<p dir="ltr">The effects of geometric features on detonation behavior have been well documented and demonstrated through examples spanning large-scale shaped charges to microscale “hot spots”. While extensive research has characterized interactions at either of these extremes – the macroscale (> 1 mm) and the microscale (< 0.1 μm) – the mesoscale (0.1 μm to 1 mm) remains less understood due to historical difficulties associated with producing and studying mesoscale features. Recent advancements in additive manufacturing have begun to change this by enabling the ability to precisely generate structures with such features, generating significant research interest. Experimental studies are hindered, however, by a dependence on diagnostic techniques that have high equipment costs, significant infrastructure requirements, and rely on sophisticated timing techniques, all of which inhibit progress. This work demonstrates the use of witness plates to characterize mesoscale features in a more cost and time-efficient way, speeding up experimentation while maintaining repeatability. The results reveal that mesoscale features cause unique damage that can be easily interpreted with tests conducted at optimal standoff distances. Non-optimal standoff distances can cause this damage to be obscured by the formation of a large underlying crater or significant surface texturing caused by the bulk explosive.</p>
5

CHARACTERIZATION OF INKJET PRINTED HIGH NITROGEN ENERGETIC MATERIALS AND BILAYER NANOTHERMITE

Adarsh Patra (6897383) 15 August 2019 (has links)
<p>This thesis presents work on two major areas of research. The first area of research involves the use of a dual-nozzle piezoelectric inkjet printing system to print bilayer aluminum bismuth (III) oxide nanothermite samples. The combinatorial printing method allows for separate fuel and oxidizer inks to be printed adjacent to each other at prescribed offset distances. The effect of the bilayer thickness on the burning rate of the samples is investigated using high-speed imaging. Analysis of the burning rate data revealed that there is no statistically significant relationship between these two parameters. This result was used to determine the dominant processes that control the propagation rate in nanothermite systems. It was concluded that convective processes dominate the burning rate rather than diffusive processes. The second area of research involved synthesizing inks suitable for inkjet printing using two promising high nitrogen energetic materials called BTATz and DAATO<sub>3.5</sub>. The performance of the developed inks was characterized using four experiments. The thermal stability and exothermic behavior of the inks were determined using DSC and TGA analysis. The results revealed that the inks are more thermally stable than the base materials. The inks were used to print lines that were subsequently used to determine burning rates. DAATO<sub>3.5</sub> samples were determined to have faster burning rates than BTATz. Closed pressure bomb experiments were conducted to determine the gas producing capability of the high nitrogen inks. BTATz samples showed better performance in terms of peak static pressures and pressurization rates. 3D printed microthrusters were developed to test the thrust performance of the inks. Peak thrust, total impulse, and specific impulse values are reported and were determined to be suitable for use with Class 1 micro-spacecraft. Finally, a microthruster array prototype was developed to demonstrate the capability to use additive manufacturing to create high packing density arrays.</p>
6

Prediction of Delivered and Ideal Specific Impulse using Random Forest Models and Parsimonious Neural Networks

Peter Joseph Salek (12455760) 29 April 2022 (has links)
<p>Development of complex aerospace systems often takes decades of research and testing. High  performing propellants are important to the success of rocket propulsion systems. Development  and testing of new propellants can be expensive and dangerous. Full scale tests are often required  to understand the performance of new propellants. Many industries have started using data science  tools to learn from previous work and conduct smarter tests. Material scientists have started using  these tools to speed up the development of new materials. These data science tools can be used to  speed up the development and design better propellants. I approach the development of new solid  propellants through two steps: Prediction of delivered performance from available literature tests,  prediction of ideal performance using physics-based models. Random Forest models are used to  correlate the ideal performance to delivered performance of a propellant based on the composition  and motor properties. I use Parsimonious Neural Networks (PNNs) to learn interpretable models  for the ideal performance of propellants. I find that the available open literature data is too biased  for the models to learn from and discover families of interpretable models to predict the ideal  performance of propellants. </p>
7

OPTICAL IGNITION AND COMBUSTION CHARACTERIZATION OF METAL FLUOROPOLYMER COMPOSITES

Kyle Uhlenhake (14153403) 28 November 2022 (has links)
<p>The ignition of energetic materials, and specifically solid propellants, is a complex process</p> <p>that must be safe, consistent, and precisely controlled. There is a wide range of applications with</p> <p>specific ignition requirements for solid propellants including inflation of airbags, propulsion</p> <p>systems (including rockets), as well as arm and fire devices. Currently, electrical or percussion</p> <p>pyrotechnic igniters are most the commonly used ignition systems. These systems must be</p> <p>carefully designed to deliver the proper amount of energy to a specified surface area of the</p> <p>propellant. A photon light source (i.e. flash or laser-based, ranging from UV to IR wavelengths)</p> <p>can potentially be used to ignite energetic materials with lower input energy and more precise</p> <p>spatial and temporal control, thereby improving safety and reliability by eliminating electrical</p> <p>systems used in pyrotechnic igniters. In addition, they could be potentially safer from stray</p> <p>electrical charges causing unintentional ignition.</p> <p>The purpose of this work is to further explore the potential of optical ignition for energetic</p> <p>systems and identify ideal materials that can be used for optical ignition. In order to identify</p> <p>optically sensitive materials, we will study ignition energies, ignition delays, flame temperatures,</p> <p>and other combustion characteristics for possible energetic materials. This research addresses a</p> <p>gap in understanding of optical ignition for energetic materials, as finding and integrating materials</p> <p>that are optically sensitive while still being practical can be extremely challenging. These</p> <p>challenges include: (1) a lack of absorptivity to optical wavelengths in the UV to low-IR range,</p> <p>and subsequently, a very high sensitivity to input energy at the absorptive wavelengths that makes</p> <p>sustained ignition difficult, (2) a need for full density materials in practical energetic systems,</p> <p>while optically sensitive materials are exceedingly difficult to ignite as packing density increases</p> <p>due to heat transfer, and (3) the lack of research regarding novel fuels/oxidizers for the specific</p> <p>purpose of optical ignition.</p> <p>Metal/fluoropolymer energetic materials have been of interest to the energetic materials</p> <p>community for many years. Due to fluorine’s excellent oxidizing ability, they can be used in</p> <p>composite materials with metal fuels to produce energetic materials for a wide variety of</p> <p>applications. Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polycarbon</p> <p>13</p> <p>monofluoride (PMF), and terpolymers such as tetrafluoroethylene, hexafluoropropylene, and</p> <p>vinylidene fluoride (THV) have already seen extensive use in applications ranging including</p> <p>protective coatings, strain gauges, and electronics. However, when combined with metals such as</p> <p>lithium, magnesium, aluminum, or titanium, they also present an opportunity for a wide variety of</p> <p>energetic materials. For this study, metal/fluoropolymer composites present a novel opportunity</p> <p>for exploring optical ignition of widely absorptive, full-density energetic materials. This work will</p> <p>characterize the combustion and sensitivity of metal/fluoropolymer composites to provide novel</p> <p>materials for optical ignition of energetics.</p> <p>Specifically, this work will begin with finding a suitable energetic composite that is optically</p> <p>sensitive. Once this material has been identified, research will be done to thoroughly characterize</p> <p>the optically sensitive composite by looking at additive manufacturability, flame temperatures, and</p> <p>ignition sensitivities from various methods and formulations. Once the material has been</p> <p>thoroughly characterized, it will be implemented into solid propellants to test the feasibility of the</p> <p>material in practical energetic systems. Finally, the lessons learned from this work will be applied</p> <p>to novel formulations to identify new optically sensitive energetic composites.</p>
8

<b>TAILORABLE ENERGETIC MATERIALS: PROPELLANT MANUFACTURING AND MODIFICATION OF EXPLOSIVES’ WAVE SHAPES AND SENSITIVITIES</b>

Joseph Robert Lawrence (18417564) 20 April 2024 (has links)
<p dir="ltr">Tailorable energetics are energetic materials that can be modified to alter their performance and sensitivity. Examples of tailoring energetic materials include additive manufacturing, manufactured hot spots, switchable energetics, and cocrystallization. Developing novel energetic material is a difficult and cost intensive process, because of this, tailoring the performance and sensitivity of existing energetic materials is critical for continued improvement. Additive manufacturing has provided new methods for generating complex geometries of composite materials. Additive manufacturing of composite materials through direct-ink-write (DIW) experiences extrusion limitations due to the high viscosities of highly solids loaded mixtures; the limitations being more severe with smaller syringe tip diameter. A novel printing technique called vibration-assisted printing (VAP) was developed as a method to extend the extrudability limits and extrusion speeds observed with direct-ink-write systems. Printability envelopes were shown in previous work to extend extrudability of monomodal glass bead composites in VAP systems over conventional DIW systems. This study compares the mass flowrates and extrudability limits for bimodal mixtures of glass beads suspended in a hydroxyl-terminated polybutadiene (HTPB) binder for both VAP and DIW printing as a function of volume percent solids loading. The bimodal glass bead mixtures showed a linear response in extrusion rate versus solids loading for both VAP and DIW systems. The VAP system was able to print higher volume loadings than the direct-ink-write system. In addition to extending the extrudability limits, the mass flowrate for the VAP system was significantly higher at all volume loadings tested compared to the DIW. Interestingly, bimodal mixtures were shown to extrude quicker than the monomodal mixtures at all volume loadings and across both printing systems.</p><p><br></p><p dir="ltr">Inhomogeneities within explosives affect the sensitivity and detonation wave shape of energetic materials. The influence of voids on explosive initiation has been well documented; however, the effects that voids between 0.1 mm and 10 mm have on a propagating detonation wave remains largely unexplored. The effect of single cylindrical voids on detonation wave shape and re-initiation was examined here using manufactured voids in a rubberized 1,3,5-trinitro-1,3,5-triazinane (RDX) explosive. Two streak imaging techniques were fielded to investigate void influence. For the first, back-surface streak imaging, the location of the void on the samples was changed and the resulting change in detonation wave shape at the downstream breakout was captured using a streak camera in cut-back experiments. The results from this experiment showed the effects of an initial jet form for short cut-back distances and as shock propagation progressed, the jet formation was absorbed by the unaffected portions of the wave front. The second method, top-surface streak imaging, was used to investigate the re-initiation/downstream propagation of the detonation front and the detonation velocity of the rubberized explosive. These experiments were compared to similar experimental results from machined voids in PBX 9501, a 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)-based explosive, to investigate the interaction of a detonation wave with a 0.5 mm void for different explosives. The experiments were also compared to simulations using a multi-dimensional and multi-material hydrodynamic code (CTH). These results showed the influence that small features can have on detonation wave shaping and how explosive properties play a key role in that interaction. In addition to air-filled voids, this study examined the effects of 0.5 mm diameter voids filled with different inert metals on the detonation wave shape for an RDX-based rubberized explosive. The metals selected for experiments were 1066 aluminum, brass, copper, and tungsten. Experimental results showed that the extent of detonation wave shaping was closely tied to the density differential between the bulk explosive and metal insert. Simulations were performed using CTH to further analyze material inclusions. Forty-four different filler materials were simulated to isolate the driving factors for wave shaping of the detonation front. The main factors of interest were bulk sound speed, shock impedance, and filler material density. Understanding the influence of material inclusions on detonation performance and wave shape allows for tailoring of detonations as well as characterizing how unintentional defects will alter the explosive.</p><p><br></p><p dir="ltr">Improving the safety of explosive materials through the synthesis of insensitive explosives has been studied extensively. However, little work has focused on creating switchable explosives. A switchable explosive is normally insensitive to detonation, and therefore safe to handle and transport, but can be sensitized when needed to create a functional explosive. Similarly, it may be desired to desensitize an explosive to prevent its function. This study examined the ability to create a switchable RDX-based rubberized explosive using thermally-expandable microspheres (TEMs). The addition of TEMs to the explosive formulation allowed for microstructural changes and potential hot spot locations such as voids to form as the microspheres expanded. Small voids (less than about 10 µm) are more likely to be critical hot spots when shocked, and likewise larger voids are less likely to ignite successfully (sub-critical) when shocked. Consequently, both sensitization and desensitization are possible. The rubberized explosive considered here with unexpanded microspheres was unable to sustain a detonation for the size used, but after specific heating followed by cooling to produce small voids, a detonation was achieved. That is, the TEMs addition to the RDX-based rubberized explosive resulted in an explosive that is detonation insensitive when unheated but becomes a functional explosive after it is sensitized through heating. This paves the way to create insensitive explosive formulations with on-demand switchable detonation function through the incorporation of thermally-expandable microspheres. Desensitization was also demonstrated with specific heating of TEMs in an initially detonable explosive charge. And finally, we also demonstrated that deflagration can be affected by heating TEMs.</p><p><br></p><p dir="ltr">Energetic cocrystallization is a technique that produces a cocrystal that is formed using two known explosives to potentially gain the benefits of one or both without the drawbacks for a particular application. A comparison of cocrystals to a physical mixture of the same coformers can be considered. Cocrystals have unique material properties and crystal structure, whereas a physical mixture is just a mixed combination of the known materials at the same molar ratio. This study used photon Doppler velocimetry (PDV) to compare the particle velocity for 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 1-methyl-3,5-dinitro-1,2,4-triazole (MDNT) at a 1:1 molar ratio for both a cocrystal and a physical mixture of the two energetic materials. This cocrystal was previously shown to detonate faster than a physical mixture. However, the PDV results here were not consistent with this result. In addition to measuring output particle velocity with PDV, the cocrystal was characterized to examine phase purity and possible signs of deterioration of the material over time. Evaluating the cocrystal with Fourier-transform infrared spectroscopy (FT-IR), bomb calorimetry, and powder X-ray diffraction (PXRD) allowed for more accurate comparison and greater confidence in the particle velocity measurements obtained in these experiments. The most significant difference in the material characterization results was the difference in enthalpy of formation, as the material tested in this study had a substantially lower enthalpy of formation than previously measured for a CL-20/MDNT cocrystal.</p>
9

Uncovering the Efficiency Limits to Obtaining Water: On Earth and Beyond

Akshay K Rao (12456060) 26 April 2022 (has links)
<p> Inclement challenges of a changing climate and humanity's desire to explore extraterrestrial environments both necessitate efficient methods to obtain freshwater. To accommodate next generation water technology, there is a need for understanding and defining the energy efficiency for unconventional water sources over a broad range of environments. Exergy analysis provides a common description for efficiency that may be used to evaluate technologies and water sources for energy feasibility. This work uses robust thermodynamic theory coupled with atmospheric and planetary data to define water capture efficiency, explore its variation across climate conditions, and identify technological niches and development needs.  </p> <p><br></p> <p> We find that desalinating saline liquid brines, even when highly saline, could be the most energetically favorable option for obtaining water outside of Earth. The energy required to access water vapor may be four to ten times higher than accessing ice deposits, however it offers the capacity for decentralized systems. Considering atmospheric water vapor harvesting on Earth, we find that the thermodynamic minimum is anywhere from 0x (RH≥ 100%) to upwards of 250x (RH<10\%) the minimum energy requirement of seawater desalination. Sorbents, modelled as metal organic frameworks (MOFs), have a particular niche in arid and semi-arid regions (20-30%). Membrane-systems are best at low relative humidity and the region of applicability is strongly affected by the vacuum pumping efficiency. Dew harvesting is best at higher humidity and fog harvesting is optimal when super-saturated conditions exist. Component (e.g., pump, chiller, etc.) inefficiencies are the largest barrier in increasing process-level efficiency and strongly impact the regions optimal technology deployment. The analysis elucidates a fundamental basis for comparing water systems energy efficiency for outer space applications and provides the first thermodynamics-based comparison of classes of atmospheric water harvesting technologies on Earth.</p>
10

Making Temperature Measurements Inside An Ammonium Perchlorate Crystal Using Encapsulated Thermophosphors

Chase William Wernex (17551410) 05 December 2023 (has links)
<p dir="ltr">Phosphor thermography is an effective technique for making spatially resolved temperature measurements on surfaces, however little consideration has been given to incorporating the phosphors inside crystalline materials to make internal measurements. Doing so would grant optical access to the phosphors through the crystal. In this work, we prepared a thermographic energetic composite via fast crash encapsulation of BaMgAl<sub>10</sub>O<sub>17</sub>:Eu (BAM) in ammonium perchlorate (AP) crystals, which enabled the use of phosphor thermography to spatially resolve the temperature of the energetic composite. We demonstrate that the temperature measurements show good agreement with thermocouple measurements. The ability to calibrate the material was also demonstrated and compared to the response in dynamic thermal environments. Usability limits as well as thermal stability issues of the composite were also investigated and discussed. The successful encapsulation of BAM within AP and demonstration of thermographic behavior in the composite, indicate the viability of using encapsulation as a method to produce thermographic energetic composites.</p>

Page generated in 0.1426 seconds