• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation of water-insoluble fibers from aqueous colloidal dispersions by electrospinning /

Stoiljković, Aleksandar. January 2007 (has links)
University, Diss., 2007--Marburg.
2

Gassensor-Detektionsmechanismen für Schwelgase von PA-Granulat und PET- Fasern

Felde, Natalia. January 2005 (has links) (PDF)
Giessen, Univ., Diss., 2005.
3

Plasmagestützte Oberflächenmodifizierung von Polypropen

Klein, Claus. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
4

Melt Spinning of the Fine PEEK Filaments / Schmelzspinnen von feinen PEEK Filamenten

Golzar, Mohammad 23 October 2004 (has links) (PDF)
The production of fine filaments using the melt spinning process needs considerable effort. A thermoplastic melt is stretched from the spinneret under a constant take-up speed. The high performance thermoplastic PEEK is solidified in the melt spinning process in a small distance and short time. Therefore, the fine PEEK filaments in the fibre formation zone underwent a high deformation and cooling rate. To make the melt spinning process stable and to produce the fine PEEK filaments, material properties and material behaviour are examined using on-line and off-line measurements. The fibre speed measured using Laser Doppler Anemometry and simultaneous temperature measured using infrared thermography enable both the strain rate and consequently the apparent extensional viscosity to be estimated. This provides the apparent extensional viscosity over the spinning line, which can itself show the structural development of PEEK fibres in the fibre formation zone, i.e. necking and solidification phenomena. The one-dimensional fibre formation model must include both procedural and material parameters. The heat transfer coefficient was estimated using the filament temperature measurement and showed a relatively high contribution of radiation and free convection in comparison to forced convection near the spinneret. The improved model of PEEK fibre formation gave a good agreement to both temperature and speed measurements, and also confirmed the high deformation rate effect on the extensional viscosity, which could be simulated with a properly generalised Newtonian constitutive equation. The end properties of the fibres, such as as-spun filament fineness, orientation (expressed using total birefringence) and total crystallisation (examined using DSC) are investigated in relation to different spinning conditions, i.e. take-up speed, throughput and the draw down ratio. The tensile test diagram results, measuring phenomena such as the elongation at break, tenacity, and the Young modulus of elasticity are also analysed in order to complete the correlation of the above-mentioned spinning conditions to the structural properties of as-spun fine PEEK filaments. The melt spinning of fine PEEK fibres under different spinning conditions is examined with the purpose of finding the optimum take-up speed and throughputs. Other spinning conditions, such as the temperature of melt processing, and the arrangement and diameter of the spinneret holes, are changed in order to make the process more stable. The recommendations for further study can be used to further examine some aspects of this work; however, this work presents a new concept for fine PEEK melt spinning supported by spinnability examinations under different spinning conditions and the improved model of fibre formation, which is also relevant for typical industrial processing applications.
5

Untersuchungen zum Einsatz von ultrahochmolekularen Polyethylenfasern in Seilen für die Fördertechnik

Mammitzsch, Jens 20 January 2015 (has links) (PDF)
Seile aus synthetischen Fasern gewinnen zunehmend an Bedeutung für fördertechnische Anwendungen. Wegen ihrer geringen Dichte und Biegesteifigkeit sowie den gleichzeitig mit Stahl vergleichbaren Zugfestigkeiten, haben sich Seile aus ultrahochmolekularen Polyethylenfasern (UHMW-PE) in vielen Anwendungen in der Seefahrt und im Offshore-Bereich durchgesetzt. Die grundsätzliche Eignung solcher Seile für technische Anwendungen, wie z.B. Kräne, Aufzüge, Windenanwendungen, wurde in wissenschaftlichen Studien bereits nachgewiesen. In der vorliegenden Arbeit werden hochfeste Polyethylenfasern verschiedener Hersteller daraufhin untersucht, in wie weit diese durch ihre Eigenschaftsprofile ebenfalls grundsätzlich für technische Anwendungen mit auftretenden Biegewechselbelastungen geeignet sind und welche Anwendungspotentiale sie bieten. Beginnend mit einem kurzen geschichtlichen Abriss über die Entwicklung von synthetischen Polymerfasern und den Einsatz der Fasern in Seilen für technische Anwendungen, sollen grundlegend die Herstellungsverfahren und Eigenschaften von Garnen aus ausgewählten UHMW Polyethylen verglichen werden. Im weiteren Verlauf werden Faserseile aus den gewählten Fasern hinsichtlich Zugfestigkeit, Biegewechselverhalten und Eignung zum Thermofixieren untersucht. Auftretende Effekte werden analysiert und auf die Eigenschaften der Fasern bzw. Garne zurückgeführt. Eine vergleichende Betrachtung der Materialkosten als Teil der gesamten Herstellungskosten der Seile bildet den Abschluss der Arbeit. / This thesis covers investigations on the properties of ultrahigh-molecular-weight (UHMW) polyethylene fibers for use of manufacturing braided fiber ropes for conveyor and hoisting applications. The importance of synthetic fibres for conveying applications has increased during the last years. Due to the low density and bending stiffness at a strength that is comparable to steel, ropes made from high-strength UHMW polyethylene fibres have found their ways into several shipping and off-shore applications. The basic aptitude of UHMW polyethylene fibres to be used in applications like cranes, elevators and winch applications has already been proven in scientific works. Within this thesis, selected UHMW polyethylene fibres are investigated to determine how much their differing property profiles do influence their aptitude to be used in technical applications with cyclic bending loads and for which potentials for fields of application they might be appropriate. Starting with a short overview on the history of synthetic fibres and the use of such fibres in technical applications, manufacturing processes and properties of these fibres are to be compared. Further, fibre ropes, made from the selected fibres, are going to be investigated concerning their tensile strength, behaviour in cyclic bend-over-sheave tests and their aptitude to increase the strength by thermosetting. Occurring effects are going to be analysed and related to the properties of the yarns. A competitive view on the prices of the yarns regarding their portion of the total costs of rope manufacturing is finalising this work.
6

Melt Spinning of the Fine PEEK Filaments

Golzar, Mohammad 11 September 2004 (has links)
The production of fine filaments using the melt spinning process needs considerable effort. A thermoplastic melt is stretched from the spinneret under a constant take-up speed. The high performance thermoplastic PEEK is solidified in the melt spinning process in a small distance and short time. Therefore, the fine PEEK filaments in the fibre formation zone underwent a high deformation and cooling rate. To make the melt spinning process stable and to produce the fine PEEK filaments, material properties and material behaviour are examined using on-line and off-line measurements. The fibre speed measured using Laser Doppler Anemometry and simultaneous temperature measured using infrared thermography enable both the strain rate and consequently the apparent extensional viscosity to be estimated. This provides the apparent extensional viscosity over the spinning line, which can itself show the structural development of PEEK fibres in the fibre formation zone, i.e. necking and solidification phenomena. The one-dimensional fibre formation model must include both procedural and material parameters. The heat transfer coefficient was estimated using the filament temperature measurement and showed a relatively high contribution of radiation and free convection in comparison to forced convection near the spinneret. The improved model of PEEK fibre formation gave a good agreement to both temperature and speed measurements, and also confirmed the high deformation rate effect on the extensional viscosity, which could be simulated with a properly generalised Newtonian constitutive equation. The end properties of the fibres, such as as-spun filament fineness, orientation (expressed using total birefringence) and total crystallisation (examined using DSC) are investigated in relation to different spinning conditions, i.e. take-up speed, throughput and the draw down ratio. The tensile test diagram results, measuring phenomena such as the elongation at break, tenacity, and the Young modulus of elasticity are also analysed in order to complete the correlation of the above-mentioned spinning conditions to the structural properties of as-spun fine PEEK filaments. The melt spinning of fine PEEK fibres under different spinning conditions is examined with the purpose of finding the optimum take-up speed and throughputs. Other spinning conditions, such as the temperature of melt processing, and the arrangement and diameter of the spinneret holes, are changed in order to make the process more stable. The recommendations for further study can be used to further examine some aspects of this work; however, this work presents a new concept for fine PEEK melt spinning supported by spinnability examinations under different spinning conditions and the improved model of fibre formation, which is also relevant for typical industrial processing applications.
7

Untersuchungen zum Einsatz von ultrahochmolekularen Polyethylenfasern in Seilen für die Fördertechnik: Untersuchungen zum Einsatz von ultrahochmolekularenPolyethylenfasern in Seilen für die Fördertechnik

Mammitzsch, Jens 08 January 2015 (has links)
Seile aus synthetischen Fasern gewinnen zunehmend an Bedeutung für fördertechnische Anwendungen. Wegen ihrer geringen Dichte und Biegesteifigkeit sowie den gleichzeitig mit Stahl vergleichbaren Zugfestigkeiten, haben sich Seile aus ultrahochmolekularen Polyethylenfasern (UHMW-PE) in vielen Anwendungen in der Seefahrt und im Offshore-Bereich durchgesetzt. Die grundsätzliche Eignung solcher Seile für technische Anwendungen, wie z.B. Kräne, Aufzüge, Windenanwendungen, wurde in wissenschaftlichen Studien bereits nachgewiesen. In der vorliegenden Arbeit werden hochfeste Polyethylenfasern verschiedener Hersteller daraufhin untersucht, in wie weit diese durch ihre Eigenschaftsprofile ebenfalls grundsätzlich für technische Anwendungen mit auftretenden Biegewechselbelastungen geeignet sind und welche Anwendungspotentiale sie bieten. Beginnend mit einem kurzen geschichtlichen Abriss über die Entwicklung von synthetischen Polymerfasern und den Einsatz der Fasern in Seilen für technische Anwendungen, sollen grundlegend die Herstellungsverfahren und Eigenschaften von Garnen aus ausgewählten UHMW Polyethylen verglichen werden. Im weiteren Verlauf werden Faserseile aus den gewählten Fasern hinsichtlich Zugfestigkeit, Biegewechselverhalten und Eignung zum Thermofixieren untersucht. Auftretende Effekte werden analysiert und auf die Eigenschaften der Fasern bzw. Garne zurückgeführt. Eine vergleichende Betrachtung der Materialkosten als Teil der gesamten Herstellungskosten der Seile bildet den Abschluss der Arbeit. / This thesis covers investigations on the properties of ultrahigh-molecular-weight (UHMW) polyethylene fibers for use of manufacturing braided fiber ropes for conveyor and hoisting applications. The importance of synthetic fibres for conveying applications has increased during the last years. Due to the low density and bending stiffness at a strength that is comparable to steel, ropes made from high-strength UHMW polyethylene fibres have found their ways into several shipping and off-shore applications. The basic aptitude of UHMW polyethylene fibres to be used in applications like cranes, elevators and winch applications has already been proven in scientific works. Within this thesis, selected UHMW polyethylene fibres are investigated to determine how much their differing property profiles do influence their aptitude to be used in technical applications with cyclic bending loads and for which potentials for fields of application they might be appropriate. Starting with a short overview on the history of synthetic fibres and the use of such fibres in technical applications, manufacturing processes and properties of these fibres are to be compared. Further, fibre ropes, made from the selected fibres, are going to be investigated concerning their tensile strength, behaviour in cyclic bend-over-sheave tests and their aptitude to increase the strength by thermosetting. Occurring effects are going to be analysed and related to the properties of the yarns. A competitive view on the prices of the yarns regarding their portion of the total costs of rope manufacturing is finalising this work.

Page generated in 0.0483 seconds