• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • Tagged with
  • 18
  • 18
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advances in flow extraction techniques : applications in forensic toxicology /

Peterson, Kristina L., January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [137]-146).
2

Ambient ionization mass spectrometry for the forensic screening of pharmaceuticals and the determination of potential drug candidates

Nyadong, Leonard. January 2009 (has links)
Thesis (Ph.D)--Chemistry and Biochemistry, Georgia Institute of Technology, 2010. / Committee Chair: Fernández, Facundo; Committee Member: Bottomley, Lawrence; Committee Member: Mizaikoff, Boris; Committee Member: Orlando, Thomas; Committee Member: Prausnitz, Mark. Part of the SMARTech Electronic Thesis and Dissertation Collection.
3

The forensic analysis of illicit Methaqualone-containing preparations by gas chromatography mass spectrometry

Grove, Alida Amelia. January 2005 (has links)
Thesis (M. Sc.)(Chemistry)--University of Pretoria, 2005. / Includes summaries in English and Afrikaans. Includes bibliographical references. Available on the Internet via the World Wide Web.
4

Advanced capillary electrophoretic techniques for the detection of date-rape and club drugs for a forensic setting /

Bishop, Sandra Charlotte. January 2004 (has links)
Thesis (Ph.D.)--Ohio University, November, 2004. / Includes bibliographical references (p. 186-195 )
5

Advanced capillary electrophoretic techniques for the detection of date-rape and club drugs for a forensic setting

Bishop, Sandra Charlotte. January 2004 (has links)
Thesis (Ph.D.)--Ohio University, November, 2004. / Title from PDF t.p. Includes bibliographical references (p. 186-195 )
6

Forensic Analysis of Ink on Documents Using Direct Analyte-Probed Nanoextraction Coupled Techniques

Huynh, Vivian 05 1900 (has links)
Analzying questioned documents in a nondestructive nature has been an issue for the forensic science community. Using nondestructive techniques such as video spectral comparator does not give reliable information due to the variations in gray or color levels that are distinguished differently by analysts. Destructive techniques such as chromatography give dependable, qualitative and quantitative, information but involves altering the evidentiary value of these questioned documents. The paradox of document examination becomes a problem when document evidence is involved, especially when trying to preserve its evidentiary value and critical data is needed. Thus, a nondestructive technique has been developed to solve the loopholes in document examinations. Direct analyte-probed nanoextraction (DAPNe) is a nanomanipulation technique that extracts ink directly off the document for further examination. A watermark is left, at most, post-extraction. DAPNe utilizes a tip emitter, pre-filled with a solvent, which is controlled in x-, y-, and z-coordinates via joystick controller and aspirates/extracts using a pressure injector. The versatility of this technique lies within the solvent chemistry and its capability to be coupled to various types of instrumentation. The extraction solvent can be altered to target specific components in the ink. For example, a chelator may be added to target metal ions found in ancient inks or methanol may be added to target certain organic resins and binding agents found in modern inks. In this study, DAPNe has been coupled to nanospray ionization mass spectrometry, fluorescence microscopy, Raman spectroscopy, matrix-assisted laser desorption ionization mass spectrometry, and laser ablation to solve questioned document concerns in the area of falsified or forged documents, redacted documents, and aging studies.
7

Improving Processing Efficiency for Forensic DNA Samples

Connon, Catherine Cupples 05 1900 (has links)
The goal of this project was to reduce processing time for forensic DNA testing without incurring significant added costs and/or the need for new instrumentation, while still generating high quality profiles. This was accomplished by: 1) extraction normalization using the ChargeSwitch® Forensic DNA Purification Kit such that a small range of DNA concentrations was consistently obtained, eliminating the need for sample quantification and dilution; 2) developing fast PCR protocols for STR primer sets using shorter amplification methods, low volume reactions and non-fast thermal cyclers; and 3) developing a quicker 3130xl Genetic Analyzer detection method using an alternative polymer/array length combination. Extraction normalization was achieved through a reduction in bead quantity, thereby forcing an increase in bead binding efficiency. Four products (AmpliTaq Gold® Fast PCR Master Mix, KAPA2G™ Fast Multiplex PCR Kit, SpeedSTAR™ HS DNA Polymerase and Type-it Microsatellite PCR Kit) were evaluated for low volume (3μl) fast PCR on a 384-well Veriti® thermal cycler with the Identifiler primer set. KAPA2G™ was selected for 3μl fast PCR protocols using PowerPlex 16 HS and Identifiler Plus primer sets (42-51min), as well as 5μl and 6μl Identifiler fast reactions on a 9700 thermal cycler (51-60min). Alternative detection (POP-6™/22cm) achieved 24-28min run times, but with decreased resolution as compared to traditional POP-4®/36cm detection for alleles >200bp; however, 1bp resolution was still obtainable for alleles <300bp. These modifications resulted in robust databasing processes with up to a 37% reduction in processing time for buccal swabs and Buccal DNA Collectors™ using the three primer sets evaluated (3μl fast PCR reactions) and generated high quality STR profiles with ≥90% pass rates.
8

Enhancement of sensitivity in capillary electrophoresis : forensic and pharmaceutical applications /

Al Najjar, Ahmed Omer. January 2004 (has links)
Thesis (Ph.D.)--Ohio University, November, 2004. / Includes bibliographical references (p. 163-171)
9

Enhancement of sensitivity in capillary electrophoresis forensic and pharmaceutical applications /

Al Najjar, Ahmed Omer. January 2004 (has links)
Thesis (Ph.D.)--Ohio University, November, 2004. / Title from PDF t.p. Includes bibliographical references (p. 163-171)
10

Ambient ionization mass spectrometry for the forensic screening of pharmaceuticals and the determination of potential drug candidates

Nyadong, Leonard 12 November 2009 (has links)
Ambient mass spectrometry (MS) is a new and growing sub-field in MS which has opened new research avenues, particularly for applications relating to the analysis of solid samples. Results on the implementation and application of ambient MS techniques including: desorption electrospray ionization (DESI) and direct analysis in real time (DART) indicated that these techniques could serve as complementary tools for the rapid qualitative screening of pharmaceuticals, allowing up to two orders of magnitude improvement in throughput compared to traditional methods such as liquid chromatography MS. The selectivity of DESI could be enhanced by performing the experiment in the reactive mode. In this mode, complexation reactions between reagents added to the spray solvent and analytes on the sample surface resulted in analyte stabilization, inhibiting fragmentation. They also resulted in a concomitant enhancement in the analyte surface activity, facilitating their evaporation from secondary droplets culminating in an improvement in sensitivity. Also for drug tablets analysis, the analyte signal dependency on DESI geometrical set-up variables could be mitigated following the careful and controlled addition of an isotopically labeled internal standard (IS) to the sample or by spraying samples with a pair of reagents with different affinities for the analyte. Either of these approaches resulted in an analyte-to-IS signal ratio (in the former) or an analyte complex ratio (in the later), which was largely independent of DESI experimental variables allowing quantitative analysis using this technique. DESI MS was also observed to be a very powerful tool for determining the 2-D distribution of various pharmaceutically important compounds on tablet and tissue surfaces. The ability to map the distribution of molecules of interest by DESI MS has very great implications in drug tablet quality control and in determining the role of chemical signals presented on tissue surfaces. DESI was observed to be limited to ionizing molecules of medium to high polarities without much limitation in terms of mass range, whereas DART was better suited for the analysis of molecules within a broader range of polarities, but within a more limited mass range (up to 800 Da approximately). These limitations were circumvented by implementing a novel multimode ambient ion source, desorption electrospray/metastable-induced ionization (DEMI), which combines various aspects of DESI and DART. Initial experiments with the DEMI ion source demonstrated its ability to enable the simultaneous analysis of molecules within a broader range of polarities and masses than DESI and DART alone.

Page generated in 0.0494 seconds