• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 84
  • 84
  • 84
  • 46
  • 38
  • 34
  • 34
  • 32
  • 28
  • 21
  • 20
  • 20
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development and application of asymmetric C-N bond formation

Snell, Robert Henry January 2011 (has links)
A synthetic investigation on the chemistry of cyclotryptamine derived natural products, with a particular focus on the synthesis of the trimeric-alkaloid, hodgkinsine. Methodology has been developed to tackle this complex natural product which utilises a desymmetrization approach; this strategy hinges on the development and applications of asymmetric C-N bond forming reactions. Chapter one examines elements of symmetry in natural products, looking in particular at the synthesis of compounds which contain cyclotryptamine functionality. Chapter two contains a brief review of enantioselective desymmetrization paying attention, if possible, on its application in the synthesis of natural products. In the remaining chapters we discuss our own progress and results in our pursuit of an efficient enantioselective total synthesis of hodgkinsine.
62

Palladium-catalysed enolate arylation in the synthesis of isoquinolines

Gatland, Alice Elizabeth January 2014 (has links)
<strong>Chapter 1. Introduction</strong> Scientific background on the development of homogeneous palladium-catalysed cross coupling reactions, focusing on the &alpha;-arylation reaction of enolates and its application to the synthesis of heteroaromatic compounds. The classical syntheses of isoquinolines are discussed, followed by an account of modern methods for their synthesis, including the recent &alpha;-arylation-based methodology developed by the Donohoe group. <strong>Chapter 2. Results and Discussion</strong> 2.1 Studies towards the development of a palladium-catalysed, C–H activation-based &alpha; arylation reaction of ketones, resulting in a C–H bromination/&alpha;-arylation sequence for the synthesis of isoquinolines and isoquinoline N-oxides. 2.2 The one-pot, four component coupling of a ketone, an acetal protected ortho-bromobenzaldehyde or ketone, an electrophile, and an ammonia source is described. This protocol, which ultimately provides C4 functionalised isoquinolines, is later extended to a novel &alpha;,&alpha; heterodiarylation protocol to furnish C4-aryl isoquinolines. 2.3 It is shown that the synthesis of 3 aminoisoquinolines can be achieved via the &alpha; arylation of nitriles. tert-Butyl cyanoacetate can act as a substitute for primary alkyl nitriles, with sequential &alpha;-arylation, in situ functionalisation, decarboxylation and cyclisation reactions provide C4 functionalised 3 aminoisoquinolines. 2.4 The synthetic utility of the &alpha; arylation based methodology for isoquinoline synthesis is exemplified by the total synthesis of the alkaloid berberine in 68% yield over five steps. This is followed by syntheses of pseudocoptisine, palmatine, dehydrocorydaline, and an unnatural fluorine containing analogue, in yields of 46%, 73%, 60% and 37%, respectively. 2.5 Finally, preliminary investigations demonstrate the utility of palladium-catalysed enolate arylation in the synthesis of &beta;-carbolines.
63

Peptides as therapeutics

Lopez Aguilar, Aime January 2011 (has links)
Peptides have attracted increasing attention as therapeutics in recent years, at least partially as a consequence of the widespread acceptance of protein therapeutics; but also as possible solutions to problems such as short half-life and delivery of molecules, and as therapeutics in their own right. The current work presents three projects that involve applications of peptides in a therapeutic environment. The first project studies the use of ER retaining peptides and CPPs (Cell penetrating peptides) in enhancing the effective concentration of DNJ (1-deoxynojirimycin), an α-glucosidase inhibitor, in cells. DNJ constructs with ER retaining peptides (6-[N-(1-deoxynojirimycino)]-hexanoyl-KDEL and 6-[N-(1-deoxynojirimycino)]-hexanoyl-KKAA) and CPPs (6-[N-(1-deoxynojirimycino)]-hexanoyl-TAT and 6-[N-(1-deoxynojirimycino)]-hexanoyl-MAP) were synthesised and analysed for their inhibitory activity against α-glucosidase I and II in vitro. The constructs were then analysed in a cell-based assay to determine their inhibitory activity on α¬-glucosidase-mediated hydrolysis of N-linked oligosaccharides. FITC-labelled ER retaining peptides were also synthesised to determine the internalisation and trafficking of the constructs by FACS and IF-microscopy. While none of the DNJ-constructs showed higher cellular inhibition than NB-DNJ (N-butyl DNJ; Miglustat), the CPP construct 6-[N-(1-deoxynojirimycino)]-hexanoyl-TAT showed comparable activity and the ER retaining construct 6-[N-(1-deoxynojirimycino)]-hexanoyl-KDEL showed a small but significant increase in activity following long-term administration. The second project focuses on beauveriolides, a cyclic depsipeptide family shown to have activity as ACAT inhibitors and thus a possible treatment for Alzheimer’s disease by the decrease in the production of Amyloid β (Aβ). A published total synthetic method was improved by the use of a cross-metathesis to reduce the total synthesis by 5 steps and increase its flexibility to allow the production of analogues. The synthesised beauveriolide III was used in attempts to develop an IF-FACS-based assay to measure the intracellular concentrations of Aβ. However, the location of γ-secretase in the used cell-line meant that levels of intracellular Aβ were not sufficient to track any decrease caused by ACAT inhibition. The third project involves the design of a cyclic peptide that could block the binding site for the influenza virus in the host cell. The cyclic peptide (cGSGRGYGRGWGVGA) was developed from a comparative study of four different sialic acid-binding proteins and synthesised by solution cyclisation of the linear peptide synthesised by traditional solid phase peptide synthesis (SPPS). An in silico study showed that the cyclic peptide allowed overlap with the binding site of Hemagglutinin. A 1H NMR titration determined the dissociation constant of the cyclic peptide to sialic acid. The KD corresponded to a low binding affinity, however the observed binding seemed to be specific and caused by a single bound conformation.
64

Surface active polymers as anti-infective and anti-biofouling materials

Parker, Emily M. January 2012 (has links)
This thesis is concerned with the chemical modification of polymers in the preparation of a library of materials which exhibit altered surface properties as a result of the surface chemical functionality, with particular emphasis on the development of materials that control biofouling and are antibacterial. Chemical modification of crosslinked polystyrene, in film and microsphere form, was carried out by carbene insertion followed by diazonium coupling. This provided access to a collection of materials with varying surface chemistry, whilst the bulk properties of the polystyrene substrates were maintained. Synthesis of the diaryldiazo and the diazonium salts used to perform the surface modifications is described, as well as the preparation and characterisation of the materials. Analysis of the ability of the materials to adsorb and bind the protein bovine serum albumin (BSA) is presented with data obtained from two methods of observation. Quartz Crystal Microbalance with Dissipation (QCM-D) and a protein assay based on the change in optical density of a BSA/PBS solution are used to demonstrate how the specific surface chemistry of the materials influences the ability to adsorb and bind protein. The behaviour of the materials was time dependent and was rationalised with respect to the surface water contact angle and the calculated parameters polar surface area and % polar surface area of the functional groups added to the surfaces. Finally, penicillin loaded materials were prepared and their antibacterial activity was tested against E. coli and S. aureus, demonstrating that the antibiotic is still active from within the polystyrene scaffold.
65

Determining the structures of halogenated marine natural products by total synthesis

Dyson, Bryony Sara January 2011 (has links)
Elatenyne, a brominated C<sub>15</sub> acetogenin isolated from the red Laurencia elata marine algae, was originally assigned a pyranopyran structure. Previous total synthesis of the pyranopyran structure has found this assignment to be incorrect. During this work the revised 2,2’-bifuranyl skeleton of elatenyne was suggested, but this skeleton has 32 possible diastereomers. The most likely diastereomer of elatenyne was predicted using computational <sup>13</sup>C NMR chemical shift calculation in combination with the possible stereochemical outcomes from the proposed biosynthesis. Chapter 1 introduces the structural misassignment of natural products and describes the misassignment of elatenyne as well as a related chloro enyne. The use of computational methods and biosynthetic postulates to aid structure elucidation are also discussed. Chapter 2 describes the first generation synthesis of cross metathesis coupling partners required for the synthesis of elatenyne from D-mannitol. Chapter 3 describes the completed total synthesis of elatenyne, along with three derivatives and the (E)-isomer of elatenyne; itself a natural product. A comparison of the synthetic data with the isolation data for the natural products is presented, as well as comparison with the synthetic material of Kim and co-workers whose concurrent biomimetic total synthesis is also presented. Chapter 4 describes the modular nature of the devised synthetic route to access any diastereomer of elatenyne and its application to related 2,2’-bifuranyl natural products.
66

Asymmetric synthesis of amino polyols

Foster, Emma Marie January 2012 (has links)
This thesis is concerned with the development of methodology for the asymmetric synthesis of a range of amino polyol containing compounds. Chapter 1 highlights the abundance of the amino polyol motif in nature, the wide range of biological activities displayed by amino polyol containing compounds, and their occurrence in drug molecules. A variety of different methods for the synthesis of stereodefined amino polyols is then discussed. Chapter 2 details a full investigation into the doubly diastereoselective conjugate addition reactions of the antipodes of lithium N-benzyl-N-(alpha-methylbenzyl)amide to enantiopurealpha,beta-unsaturated esters which contain a dioxolane unit. The “matched” conjugate addition reactions were further coupled with a highly diastereoselective in situ enolate oxidation using camphorsulfonyloxaziridine for the synthesis of keyalpha-hydroxy-beta-amino ester intermediates. Subsequent cyclisation and further elaboration allowed access to a range of amino polyol containing compounds including imino sugars, amino sugars, and amino acids. Chapter 3 extends the investigation into the doubly diastereoselective lithium amide conjugate addition reaction to enantiopure alpha,beta-unsaturated esters which contain two dioxolane units. A full assessment into the conjugate addition of the antipodes of lithium N-benzyl-N-(alpha-methylbenzyl)amide to a series of D-pentose derived alpha,beta-unsaturated esters is reported. Subsequent elaboration of thebeta-amino ester products of these conjugate addition reactions resulted in the synthesis of (2'S,3'S,4'R)-dihydroxyhomoproline and (2'S,3'R,4'S)-dihydroxyhomoproline. Chapter 4 describes the asymmetric syntheses of protected forms of APTO and AETD, the 2,4,5-trihydroxy substitutedbeta-amino acid residues found within the hexapeptide marine natural products microsclerodermins C, D and E. The optimised synthetic routes to APTO and AETD involved three key steps: a diastereoselective aminohydroxylation [via conjugate addition of lithium (R)-N-benzyl-N-(alpha-methylbenzyl)amide to an achiralalpha,beta-unsaturated ester followed by in situ enolate oxidation with camphorsulfonyloxaziridine], a diastereoselective dihydroxylation, and an olefination. Chapter 5 contains full experimental procedures and characterisation data for all compounds synthesised in chapters 2, 3 and 4.
67

Transition metal catalysed C-C bond formation via C-H functionalisation

Truscott, Fiona Rosemary January 2012 (has links)
The functionalisation of C-H bonds has been widely studied in organic synthesis. This work presents the results of investigation into two areas of current research, copper-catalysed aromatic C-H functionalisation and rhodium-catalysed hydroacylation. Chapter 1 presents the development of palladium- and copper-catalysed aromatic C-H functionalisation with particular attention paid to regiocontrol. Chapter 2 describes the development of copper-catalysed cross-coupling of perfluorinated arenes and alkenyl halides along with efforts to expand this methodology to a more general reaction. In Chapter 3 the development of chelation-controlled rhodium-catalysed hydroacylation is discussed. Chapter 4 outlines the utilisation of amino acid derived N-methylthiomethyl aldehydes in rhodium-catalysed hydroacylation methodology.
68

Synthesis of mono- and bicyclic azacycles via palladium- and ruthenium-catalysed enynamide cycloisomerisation

Walker, P. Ross January 2014 (has links)
The initial aim of this project was to investigate ways of synthesising fused, spirocyclic and linked bicyclic amines. We built on methodology previously developed within our group, employing cyclic dienamides, prepared using the reductive cyclisation of bromoenynamides, as key structural building blocks for further annulation. In the course of investigating the reactivity of these cyclic dienamides, we discovered a new efficient and general route to their synthesis, by employing palladium- or ruthenium-catalysed enynamide cycloisomerisation. A wide range of attractive dienamide scaffolds were synthesised from simple enynamide precursors in rapid, high yielding and operationally simple reactions, underlining their potential utility as an atom-economical source of azacycles. Chiral enynamide substrates were used to generate 1,4-dienamides as a single diastereomer at the newly formed (quaternary) stereocentre. This relay of stereochemistry was exploited not only in the formation of monocyclic dienamides, but even in the formation of a spirocyclic product, and this bodes well for further stereocontrolled synthesis of polysubstituted azacycles. Finally the palladium- and ruthenium-catalysed cycloisomerisation of enynamides was discussed and investigated mechanistically, utilising <sup>1</sup>H NMR spectroscopy, timecourse and deuterium-labelling experiments.
69

Cyclisation cascades via reactive iminium intermediates

Gregory, Alexander William January 2014 (has links)
The aim of this D.Phil was to develop a range of cyclisation cascades, which initially form a reactive iminium intermediates that can then be attacked by a pendant nucleophile resulting in novel polycyclic structures. This concept has been applied to the development of three methodologies and has resulted in the discovery of new reactivity as well as the synthesis of a wide range of interesting novel structures <b>Chapter 1: Enantioselective chiral-BINOL-phosphoric acid catalysed reaction cascade</b> A highly enantioselective hydroamination / N-sulfonyliminium cyclisation cascade using a combination of Au(I) and chiral phosphoric acid catalysts has been developed. Proceeding by an initial 5-exo-dig hydroamination and a subsequent phosphoric acid catalysed Pictet- Spengler cyclisation, the reaction provides access to complex sulfonamide scaffolds in excellent yields and with high levels of enantiocontrol. The scope can be extended to lactam derivatives, with excellent yields and enantiomeric excesses of up to 93&percnt; ee. <b>Chapter 2: Iridium catalysed nitro-Mannich cyclisation</b> A new chemoselective reductive nitro-Mannich cyclisation reaction sequence of nitroalkyltethered lactams has been developed. An initial rapid and chemoselective iridium(I) catalysed reduction of lactams to the corresponding enamine is subsequently followed by intra molecular nitro-Mannich cyclisation. This methodology provides direct access to important alkaloid, natural product-like structures in yields up to 81&percnt; and in diastereoselectivities that are typically good to excellent. An in-depth understanding of the reaction mechanism has been gained through NMR studies and characterisation of reaction intermediates. The new methodology has been applied to the total synthesis of (&plusmn;)-epi-epiquinamide in 4 steps. <b>Chapter 3: Iridium catalysed reductive interrupted Pictet-Spengler cyclisation</b> A novel reductive interrupted Pictet-Spengler cyclisation reaction cascade has been created. An iridium(I) catalyzed partial reduction of lactams/amides to the corresponding iminium is subsequently trapped by a pendant indole nucleophile. Interruption of the Pictet-Spengler reaction by indolium reduction provides a wide range of novel spirocyclic indoline moieties in excellent yield and diastereoselectivity.
70

Template directed synthesis of porphyrin nanorings

O'Sullivan, Melanie Claire January 2011 (has links)
This thesis describes supramolecular approaches to porphyrin nanorings. Cyclic porphyrin arrays resemble natural light harvesting systems, and it is of interest to probe the photophysical effects of bending the porphyrin aromatic π-system. A general overview of the synthesis and photophysical properties of porphyrins and their arrays is carried out in Chapter 1. The electronic structure of porphyrins is examined, and how conformational effects in oligomers, such as inter-porphyrin torsional angle and backbone bending influence the π-conjugation pathway. The structures of light harvesting complexes are discussed. Chapter 2 describes the design and synthesis of a complementary 12-armed template designed to coordinate linear porphyrin oligomers in the correct conformation for cyclisation to give a cyclic porphyrin dodecamer. Chapter 3 demonstrates two approaches to a cyclic porphyrin dodecamer ring. Firstly, a classical templating approach using the 12-armed template is described. The limitations of this approach in the quest for larger nanorings are discussed. Vernier templating, which utilises a mismatch in the number of binding sites between a ligand and its receptor is introduced as a general strategy to the synthesis of large nanorings. This is demonstrated by the synthesis of cyclic dodecamer from a linear porphyrin tetramer and a hexadentate template via a figure-of-eight intermediate. The general utility of the Vernier method to large nanorings is explored in Chapter 4 with steps towards the synthesis of a cyclic tetracosamer, consisting of 24 porphyrin subunits. In preliminary experiments, an improved route to the cyclic porphyrin octamer is described. Finally, the photophysical properties of the nanoring series are explored in Chapter 5 as a function of size and conformation. Femtosecond photoluminescence spectroscopy shows that even in cyclic dodecamer, exciton delocalisation over the entire porphyrin backbone occurs on a sub-picosecond timescale, and parallels are drawn with the dynamics of natural light harvesting complexes.

Page generated in 0.2782 seconds