• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanoscale coordination polymers for anticancer drug delivery

Phillips, Rachel Huxford 10 August 2013 (has links)
<p> This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. </p><p> Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)<sub>3</sub><sup>2+</sup> (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. </p><p> NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. </p><p> Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. </p><p> Finally, a Pt(IV) oxaliplatin prodrug was synthesized and incorporated in different NCPs using various binding metals. A moderate drug loading of 44.9 wt% was determined for Zr-based NCPs. This drug loading, along with a diameter less than 200 nm, make these particles promising candidates for further stabilization via lipid encapsulation.</p>
2

The influence of dopant distribution on the optoelectronic properties of tin-doped indium oxide nanocrystals and nanocrystal films

Lounis, Sebastien Dahmane 28 March 2015 (has links)
<p> Colloidally prepared nanocrystals of transparent conducting oxide (TCO) semiconductors have emerged in the past decade as an exciting new class of plasmonic materials. In recent years, there has been tremendous progress in developing synthetic methods for the growth of these nanocrystals, basic characterization of their properties, and their successful integration into optoelectronic and electrochemical devices. However, many fundamental questions remain about the physics of localized surface plasmon resonance (LSPR) in these materials, and how their optoelectronic properties derive from their underlying structural properties. In particular, the influence of the concentration and distribution of dopant ions and compensating defects on the optoelectronic properties of TCO nanocrystals has seen little investigation. </p><p> Indium tin oxide (ITO) is the most widely studied and commercially deployed TCO. Herein we investigate the role of the distribution of tin dopants on the optoelectronic properties of colloidally prepared ITO nanocrystals. Owing to a high free electron density, ITO nanocrystals display strong LSPR absorption in the near infrared. Depending on the particular organic ligands used, they are soluble in various solvents and can readily be integrated into densely packed nanocrystal films with high conductivities. Using a combination of spectroscopic techniques, modeling and simulation of the optical properties of the nanocrystals using the Drude model, and transport measurements, it is demonstrated herein that the radial distribution of tin dopants has a strong effect on the optoelectronic properties of ITO nanocrystals. </p><p> ITO nanocrystals were synthesized in both surface-segregated and uniformly distributed dopant profiles. Temperature dependent measurements of optical absorbance were first combined with Drude modeling to extract the internal electrical properties of the ITO nanocrystals, demonstrating that they are well-behaved degenerately doped semiconductors displaying finite conductivity at low temperature and room temperature conductivity reduced by one order of magnitude from that of high-quality thin film ITO. </p><p> Synchrotron based x-ray photoelectron spectroscopy (XPS) was then employed to perform detailed depth profiling of the elemental composition of ITO nanocrystals, confirming the degree of dopant surface-segregation. Based on free carrier concentrations extracted from Drude fitting of LSPR absorbance, an inverse correlation was found between surface segregation of tin and overall dopant activation. Furthermore, radial distribution of dopants was found to significantly affect the lineshape and quality factor of the LSPR absorbance. ITO nanocrystals with highly surface segregated dopants displayed symmetric LSPRs with high quality factors, while uniformly doped ITO nanocrystals displayed asymmetric LSPRs with reduced quality factors. These effects are attributed to damping of the plasmon by Coulombic scattering off ionized dopant impurities. </p><p> Finally, the distribution of dopants is also found to influence the conductivity of ITO nanocrystal films. Films made from nanocrystals with a high degree of surface segregation demonstrated one order of magnitude higher conductivity than those based on uniformly doped crystals. However, no evidence was found for differences in the surface electronic structure from one type of crystal to the other based on XPS and the exact mechanism for this difference is still not understood. </p><p> Several future studies to further illuminate the influence of dopant distribution on ITO nanocrystals are suggested. Using synchrotron radiation, detailed photoelectron spectroscopy on clean ITO nanocrystal surfaces, single-nanoparticle optical measurements, and hard x-ray structural studies will all be instructive in elucidating the interaction between oscillating free electrons and defect scattering centers when a plasmon is excited. In addition, measurements of temperature and surface treatment-dependent conductivity with carefully controlled atmosphere and surface chemistry will be needed in order to better understand the transport properties of ITO nanocrystal films. Each of these studies will enable better fundamental knowledge of the plasmonic properties of nanostructures and improve the development of nanocrystal based plasmonic devices.</p>

Page generated in 0.0525 seconds