• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 6
  • Tagged with
  • 65
  • 65
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Overview of plant-based natural antioxidants and effect of thermal decomposition

Maheshwari, Neha January 1900 (has links)
Master of Science / Food Science Institute - Animal Sciences and Industry / J. Scott Smith / The popularity of convenience foods and consumer awareness have indirectly increased the demand for novel and naturally occurring compounds that can delay oxidative deterioration and maintain nutritional quality of foods. Natural antioxidants from certain herbs and spices such as rosmarinic acid from rosemary, thymol from oregano, eugenol from clove, curcumin from turmeric are rich in polyphenolic compounds that provide long term oxidative stability as well as offer additional health benefits. High antioxidative capacity of herbs and spices phenolics could potentially substitute synthetic antioxidants such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate (PG), octyl gallate, and tert-butylated hydroquinone (TBHQ) in the food system. Synthetic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are thermally unstable and decompose at higher temperatures. However, widely used cooking methods such as baking, frying, boiling, and roasting use high thermal temperature that can chemically degrade herbs and spices and diminish their antioxidative capacity, but they have been little studied. In this context, this review deals with the need of natural antioxidants, spices and herbs as natural antioxidants, their origin, chemical composition, pharmacological, and antioxidant properties. Moreover, the impact of temperature on total antioxidant capacity (TAC) of various herbs and spices such as cinnamon, clove, nutmeg, mace, oregano, rosemary, sage, and turmeric is highlighted. Different antioxidant assays are also studied and this approach revealed that there is a clear correlation between total phenolic content (TPC) and TAC of herbs and spices and specific phenolic compounds are responsible for the antioxidative capacity of particular herb and spice. These findings identified the optimum cooking temperature-time combination which results in the highest retention of antioxidative capacity and assures higher quality of food for the maintenance of human health.
62

Fluctuation solution theory

Ploetz, Elizabeth Anne January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Paul E. Smith / The Kirkwood-Buff (KB) theory of solutions, published in 1951, established a route from integrals over radial (pair) distribution functions (RDFs) in the grand canonical ensemble to a set of thermodynamic quantities in an equivalent closed ensemble. These “KB integrals” (KBIs) can also be expressed in terms of the particle-particle (i.e., concentration or density) fluctuations within grand canonical ensemble regions. Contributions by Ben-Naim in 1977 provided the means to obtain the KBIs if one already knew the set of thermodynamic quantities for the mixture of interest; that is, he provided the inversion procedure. Thus, KB theory provides a two-way bridge between local (microscopic) and global (bulk/thermodynamic) properties. Due to its lack of approximations, its wide ranging applicability, and the absence of a competitive theory for rigorously understanding liquid mixtures, it has been used to understand solution microheterogeneity, solute solubility, cosolvent effects on biomolecules, preferential solvation, etc. Here, after using KB theory to test the accuracy of pair potentials, we present and illustrate two extensions of the theory, resulting in a general Fluctuation Solution Theory (FST). First, we generalize KB theory to include two-way relationships between the grand canonical ensemble’s particle-energy and energy-energy fluctuations and additional thermodynamic quantities. This extension allows for non-isothermal conditions to be considered, unlike traditional KB theory. We illustrate these new relationships using analyses of experimental data and molecular dynamics (MD) simulations for pure liquids and binary mixtures. Furthermore, we use it to obtain conformation-specific infinitely dilute partial molar volumes and compressibilities for proteins (other properties will follow) from MD simulations and compare the method to a non-FST method for obtaining the same properties. The second extension of KB theory involves moving beyond doublet particle fluctuations to additionally consider triplet and quadruplet particle fluctuations, which are related to derivatives of the thermodynamic properties involved in regular KB theory. We present these higher order fluctuations obtained from experiment and simulation for pure liquids and binary mixtures. Using the newfound experimental third and fourth cumulants of the distribution of particles in solution, which can be extracted from bulk thermodynamic data using this extension, we also probe particle distributions’ non-Gaussian nature.
63

Antilarval substituted phenols, distribution of tricyclic pyrones in mice, and synthesis of unnatural amino acids

Nguyen, Thi D.T. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / Three research projects were carried out and they are described below. The synthesis of substituted phenolic compounds including halogenated di- and trihydroxybenzenes, aminophenols, and substituted di-tert-butylphenols are described. Redox potentials of the synthesized molecules along with various known laccase substrates were measured, and an inverse relationship between the oxidation potential and the efficiency of oxidation by laccase of halogenated hydroxybenzenes and aminophenols is demonstrated. The synthesized substituted phenols were found to be substrates but not inhibitors of laccase. We discovered a new class of di-tert-butylphenols compounds that inhibits the growth of mosquito larvae at low concentrations. Compound 17, 2,4-di-tert-butyl-6-(3-methyl-2-butenyl) phenol caused greater than 98% mortality of third-instar larvae of Anopheles gambiae in the concentration of 0.18 µM. These compounds do not inhibit laccases. It appears that they affect a new target of the mosquito that is different from those of currently existing pesticides. Two anti-Alzheimer molecules, CP2 and TP70, discovered in our laboratory were studied for their pharmacokinetics and distribution. The distribution of CP2 and TP70 in mouse brain region and various tissues of mice were examined. HPLC analysis revealed that CP2 treatment in primary neurons accumulates in mitochondria fraction. Similarly, the amount of CP2 in the brain tissue from wild type and APP/PS1 mice treated with 25 mg/kg/daily for 2 months also have the highest concentration in the mitochondria fractions in the hippocampus. The results show that CP2 and TP70 can penetrate the blood brain barrier and accumulate in the tissue in significant amounts. Pharmacokinetics and bioavailability of compound TP70 were determined. Area under the curve and bioavailability value F were calculated, and data show that TP70 has a good PK profile and bioavailability. For the preparation of a novel tripeptidyl norovirus 3C-like protease (3CL[superscript]pro) inhibitor, the P3 unnatural amino acid, (S)-3-hydroxyphenylalanine was synthesized. The P3 is designed to increase the polarity with the addition of the alcohol group. After combining the P3 unnatural amino acid with the P1 and P2 to form the novel tripeptidyl compound, a study comparing the relations between the structure and its activity (SAR) will confirm whether prediction is correct in our pursuit for an antiviral therapeutic drug in the form of a protease inhibitor.
64

Part 1: Mechanistic insights into the photochemistry of tetrazolethiones Part 2: Synthesis of phenanthridine-fused quinazoliniminium and computational investigation of their optoelectronic properties

Alawode, Olajide E. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Sundeep Rayat / Research in our laboratory has focused on designing photoactivated DNA cleaving agents based on tetrazolethione scaffolds. The key step in the activation of these involves conversion of tetrazolethione moiety to carbodiimides upon irradiation. However, the mechanism of this reaction was not previously reported. Therefore, we undertook a study to elucidate the mechanism of photodecomposition of tetrazolethione as to identify reactive intermediates involved, that may interfere or aid with the activity of our synthesized DNA cleaving agents under physiological conditions. In Part 1 of this dissertation, we present mechanistic studies on this photodecomposition. Our results indicate the clean photoconversion of tetrazolethiones I to their respective carbodiimides IV via the expulsion of sulfur and dinitrogen. Photoirradiation in the presence of trapping agent (e.g. 1,4-cyclohexadiene) resulted into the formation of their corresponding thioureas. Thus, providing strong evidence for the intermediacy of a 1,3-biradical III, which is believed to be in its triplet spin multiplicity. Further investigations (triplet sensitization and quenching experiments) to determine the precursor of the biradical argued against the involvement of a triplet excited state (T[subscript]1). We believe that the mechanistic pathway that leads to the formation of a 1,3-triplet biradical III is a diradicaloid species II-II" generated directly from the singlet excited state of tetrazolethiones (S[subscript]1) after the expulsion of dinitrogen. Once formed, this diradicaloid species could be envisioned to undergo intersystem crossing to generate the 1,3 triplet biradical III which then undergoes desulfurization to form carbodiimides IV (Chapter 2). Bridgehead-nitrogen containing fused heterocycles are regarded as “privileged structure” in biology and have found widespread applications in pharmaceutical industry. These heterocycles have also been evaluated in electroluminescent devices and organic dyes. Part II of the dissertation present new, concise and low cost strategies to a unique class of bridgehead nitrogen-containing fused heterocyclic scaffolds which involves two sequential intramolecular cyclizations from heteroenyne-allenes in the presence of Lewis acids such as SnCl[subscript]4 and BF[subscript]3.OEt[subscript]2, and trace water. The starting heteroenyne-allenes VI can be prepared from commercially available substrates V in 4 – 5 steps following standard protocols (Chapter 3). Furthermore, we employed density functional theory to gain insights into the optoelectronic properties of select derivatives of phenanthridine-fused quinazoliniminiums (PNQs) VII and their free base in order to evaluate their scope in OLED technology. Our results show that the energies of the Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), the HOMO-LUMO energy gaps, the ionization potentials, electron affinities and the reorganization energies can be finely tuned by varying the substituents on these chromophores. In addition, we found that the introduction of an electron donating group (NMe[subscript]2) on the PNQs and their free base increases the energies of the HOMOs and decreases the ionization potentials, relative to its unsubstituted derivative, whereas substitution by an electron withdrawing group (NO[subscript]2) decreases the energies of the LUMOs and increases the electron affinities which in turn suggests an improvement in their hole and electron creating abilities, respectively (Chapter 4).
65

Hybrid core-shell nanowire electrodes utilizing vertically aligned carbon nanofiber arrays for high-performance energy storage

Klankowski, Steven Arnold January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Nanostructured electrode materials for electrochemical energy storage systems have been shown to improve both rate performance and capacity retention, while allowing considerably longer cycling lifetime. The nano-architectures provide enhanced kinetics by means of larger surface area, higher porosity, better material interconnectivity, shorter diffusion lengths, and overall mechanical stability. Meanwhile, active materials that once were excluded from use due to bulk property issues are now being examined in new nanoarchitecture. Silicon was such a material, desired for its large lithium-ion storage capacity of 4,200 mAh g[superscript]-1 and low redox potential of 0.4 V vs. Li/Li[superscript]+; however, a ~300% volume expansion and increased resistivity upon lithiation limited its broader applications. In the first study, the silicon-coated vertically aligned carbon nanofiber (VACNF) array presents a unique core-shell nanowire (NW) architecture that demonstrates both good capacity and high rate performance. In follow-up, the Si-VACNFs NW electrode demonstrates enhanced power rate capabilities as it shows excellent storage capacity at high rates, attributed to the unique nanoneedle structure that high vacuum sputtering produces on the three-dimensional array. Following silicon’s success, titanium dioxide has been explored as an alternative highrate electrode material by utilizing the dual storage mechanisms of Li+ insertion and pseudocapacitance. The TiO[subscript]2-coated VACNFs shows improved electrochemical activity that delivers near theoretical capacity at larger currents due to shorter Li[superscript]+ diffusion lengths and highly effective electron transport. A unique cell is formed with the Si-coated and TiO[subscript]2-coated electrodes place counter to one another, creating the hybrid of lithium ion battery-pseudocapacitor that demonstrated both high power and high energy densities. The hybrid cell operates like a battery at lower current rates, achieving larger discharge capacity, while retaining one-third of that capacity as the current is raised by 100-fold. This showcases the VACNF arrays as a solid platform capable of assisting lithium active compounds to achieve high capacity at very high rates, comparable to modern supercapacitors. Lastly, manganese oxide is explored to demonstrate the high power rate performance that the VACNF array can provide by creating a supercapacitor that is highly effective in cycling at various high current rates, maintaining high-capacity and good cycling performance for thousands of cycles.

Page generated in 0.052 seconds