Spelling suggestions: "subject:"astrochemistry (nanotechnology)"" "subject:"astrochemistry (nanotechnnology)""
1 |
Oxidative behavior and thermal stability of C60 colloidal suspensions in water and C60/gamma-cyclodextrin polymer networksHikkaduwa Koralege, Rangika S. 22 October 2015 (has links)
<p> Since its discovery in 1985, buckminsterfullerene (C<sub> 60</sub>) has been extensively studied due to its unique properties and it's now being produced in multi-ton quantities. The ability to form stable aqueous C<sub>60</sub> colloids (known as nano-C<sub>60</sub> or <i>n</i>C<sub> 60</sub>) and the availability of these in natural systems at environmentally-relevant concentrations led to significant interest concerning the environmental health and safety of these colloidal aggregates. Addressing two issues with regard to this material's environmental health and safety concerns we have looked at the oxidative mechanism of these <i>n</i>C<sub>60</sub> colloidal aggregates and their thermal stability. For making accurate kinetics and measurements on oxidation caused by aqueous-<i>n</i>C<sub>60</sub> colloidal dispersions, we have developed experimental methods utilizing dihydrorhodamine 123 (DHR123) as a sacrificial probe molecule to monitor oxidation by fluorescence spectroscopy and kinetic models to explain observed oxidation. Evaluation of the oxidative behavior of fullerene colloids has been determined using the oxidation rate as a function of <i>n</i>C<sub>60</sub> concentration, <i> n</i>C<sub>60</sub> surface area, number of colloidal particles and C<sub> 60</sub>O content, operating where necessary under inert atmosphere and oxygen rich conditions. The effect of temperature on these colloids plays a significant role in both their synthesis and reactivity. Given that the colloids are mainly composed of C<sub>60</sub> and C<sub>60</sub>O, C<sub>60</sub>O might play a significant role in stabilizing the colloid, hence increasing the temperature might cause thermally-activated reactions with C<sub>60</sub>O. Thermal stability of these colloids prepared by all four primary <i>n</i>C<sub>60 </sub> synthesis methods has been investigated. Incorporation of C<sub>60 </sub> into polymers is of potential interest for applications, for sequestration to address potential environmental health and safety issues, and as a component in novel architectures. A new composite material was developed by encapsulating C<sub>60</sub> into cross-linked polymer network formed by γ-cyclodextrin. A simple synthesis route to achieve composite membranes of intercalated C<sub> 60</sub> in the polymer network is presented.</p>
|
2 |
Engineering nanoparticles surface for biosensing: “Chemical noses” to detect and identify proteins, bacteria and cancerous cellsMiranda-Sanchez, Oscar Ramon 01 January 2011 (has links)
Rapid and sensitive detection of biomolecules is an important issue in nanomedicine. Many disorders are manifested by changes in protein levels of serum and other biofluids. Rapid and effective differentiation between normal and cancerous cells is an important challenge for the diagnosis and treatment of tumor. Likewise, rapid and effective identification of pathogens is a key target in both biomedical and environmental monitoring. Most biological recognition processes occur via specific interactions. Gold nanoparticles (AuNP s) feature sizes commensurate with biomacromolecules, coupled with useful physical and optical properties. A key issue in the use of nanomaterials is controlling the interfacial interactions of these complex systems. Modulation of these physicochemical properties can be readily achieved by engineering nanoparticles surface. Inspired by the idea of mimicking nature, a convenient, precise and rapid method for sensing proteins, cancerous cells and bacteria has been developed by overtaking the superb performance of biological olfactory systems in odor detection, identification, tracking, and location. On the fundamental side, an array-based/‘chemical nose’ sensor composed of cationic functionalized AuNPs as receptors and anionic fluorescent conjugated polymers or green fluorescent proteins or enzyme/substrates as transducers that can properly detect and identify proteins, bacteria, and cancerous cells has been successfully fabricated.
|
3 |
Photocleavable junctions in complex polymer architectures and photoetchable thermoplasticsSterner, Elizabeth Surles 01 January 2014 (has links)
Polymer materials have become important tools in nanomanufacturing due to their facile processing and ready attainment of the necessary feature sizes. The development of cleavable junctions has led to advances in the production of polymer nanotemplates. Photocleavage strategies have come to the forefront of the field because photons, as a cleavage stimulus, do not have the mass-transport limitations of chemical methods, and provide for targeted two- and three-dimensional feature control. This dissertation presents a method for producing photocleavable materials by one-pot copper-catalyzed azide-alkyne "click" chemistry (CuAAC), activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and activated ester substitution methods that have each block labeled with a fluorescent dye, enabling exploration of the polymer physics of these systems by correlation fluorescence spectroscopy. It also introduces a novel photocleavable linker, the o-nitrobenzyl-1,2,3-triazole, its behavior on photocleavage, and a facile method for the production of the o-nitrobenzyl azides necessary for their synthesis. The synthesis and properties of a bulk photodegradable polytriazole are reported, as are proof of concept experiments demonstrating its potential as a directly photoetchable material. Lastly, this dissertation contains a perspective on possible avenues of new research on the topics presented.
|
4 |
Engineering functional nanostructures for materials and biological applicationsSubramani, Chandramouleeswaran 01 January 2013 (has links)
Engineering nanostructures with complete control over the shape, composition, organization of the surface structures, and function remains a major challenge. In my work, I have fabricated nanostructures using functional polymer motifs and nanoparticles (NPs) via supramolecular and non-supramolecular interactions. In one of the approaches to generate nanostructures, I have integrated top-down approaches such as nanoimprint lithography, electron-beam lithography, and photolithography with the self-assembly (bottom-up) of NPs to provide nanostructures with tailored shape and function. In this strategy, I have developed a geometrically assisted orthogonal assembly of nanoparticles onto polymer features at precisely defined locations. This versatile NP functionalization method can be used to fabricate protein resistant patterned surfaces to provide essentially complete control over cellular alignment, making them promising biofunctional structures for cell patterning. In another approach, I have utilized self-assembly of dendrimers and NPs without preformed templates to generate nanostructures that can be used as chemoselective membranes for the separation of small and biomacromolecules.
|
5 |
Material characterization using spectrofluorometersNettles, Charles B. 10 January 2017 (has links)
<p> The use of spectrofluorometers to examine nanomaterials is quite popular using either fluorescence or synchronous measurements. However, understanding how a material’s optical properties can influence spectral acquisition are of great importance to accurately characterize nanomaterials. This dissertation presents a series of computational and experimental studies aimed at enhancing the quantitative understanding of nanoparticle interactions with matter and photons. This allows for more reliable spectrofluorometer based acquisition of nanoparticle containing solutions. </p><p> Chapter I presents a background overview of the works described in this dissertation. Correction of the gold nanoparticle (AuNP) inner filter effect (IFE) on fluorophore fluorescence using PEGylated AuNPs as an external reference method is demonstrated in Chapter II. The AuNP IFE is corrected to quantify tryptophan fluorescence for surface adsorbed proteins. We demonstrate that protein adsorption onto AuNPs will only induce ~ 20% tryptophan fluorescence reduction instead of the commonly assumed 100% reduction. </p><p> Using water Raman intensities to determine the effective path lengths of a spectrofluorometer for correction of fluorophore fluorescence is discussed in Chapter III. Using Ni(NO3)2 and K2Cr2O7 as Raman IFE references, the excitation and emission path lengths are found to exhibit chromophore and fluorophore independence, however path lengths are spectrofluorometer dependent. </p><p> Finally, ratiometric resonance synchronous spectroscopy (R2S2) is discussed in Chapter IV. Using a combination of UV-vis and R2S2 spectroscopy, the optical cross sections of a wide range of nanomaterials were determined. Also on-resonance fluorescence in solution is demonstrated for the first time. The nanoparticles discussed range from photon absorbers, scatterers, simultaneous photon absorbers and scatterers, all the way to simultaneous photon absorbers, scatterers, and emitters.</p>
|
6 |
Self-assembly of block copolymers for the fabrication of functional nanomaterialsYao, Li 01 January 2013 (has links)
This dissertation explores the use of block copolymers which can self-assemble into different morphologies as templates to fabricate nanostructured materials. The first section (Chapters 2-4) reports the formation of mesoporous silica films with spherical, cylindrical and bicontinuous pores up to 40 nm in diameter through replicating the morphologies of the solid block copolymer (BCP) templates, polystyrene-b-poly(tert-butyl acrylate) (PS-b-PtBA), via phase selective condensation of tetraethylorthosilicate in supercritical CO2. Next, directed self-assembly was used to control the orientation of cylindrical domains in PS- b-PtBA templates. Large-area aligned mesochannels in silica films with diameters tunable between 5 and 30 nm were achieved through the replication of oriented templates via scCO2 infusion. The long-range alignment of mesochannels was confirmed through GISAXS with sample stage azimuthal rotation. In the second section (Chapters 5-6), enantiopure tartaric acid was used as an additive to dramatically improve ordering in poly(ethylene oxide-block- tert-butyl acrylate) (PEO-b-PtBA) copolymers. Transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray scattering were used to study the phase behavior and morphologies within both bulk and thin films. With the addition of a photo acid generator, photo-induced disorder in the PEO-b-PtBA/tartaric acid composite system was achieved upon UV exposure which deprotected the PtBA block to yield poly(acrylic acid) (PAA), which is phase-miscible with PEO. Area-selective UV exposure using a photo-mask was applied with the assistance of trace amounts of base quencher to achieve high-resolution hierarchical patterns. Helical superstructures were observed by TEM in this BCP/chiral additive system with 3D handedness confirmed by TEM tomography. In the last section (Chapter 7), ultra-high loadings of nanoparticles into target domains of block copolymer composites were achieved by blending the block copolymer hosts with small molecule additives that exhibit strong interactions with one of the polymer chain segments and with the nanoparticle ligands via hydrogen bonding. The addition of 40 wt% D-tartaric acid to poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) enabled the loading of up to 150 wt% of 4-hydroxythiophenol functionalized Au nanoparticles relative to the mass of the target hydrophilic domain. This was equivalent to over 40% Au by mass of the resulting well ordered composite as measured by thermal gravimetric analysis.
|
7 |
DNA in Ionic Liquids and PolyelectrolytesKhimji, Imran January 2013 (has links)
DNA has been widely studied in a variety of solvents. The majority of these solvents consist of either aqueous or organic components. The presence of ions or salts in these solvents can further alter DNA properties by changing the melting point or helical structure. The size, charge, and concentration of these additional components can all affect the behaviour of DNA. A new class of solvents, known as ionic liquids have recently gained popularity. Ionic liquids are comprised of entirely of ions and can be liquid at room temperature. Due to their low volatility and ability to dissolve both polar and non-polar substances, they are generating high levels of interest as ‘green solvents’. Although the interaction between DNA and ionic liquids has been characterized, the potential of this interaction is still being studied. It was discovered that when DNA mixed with DNA intercalating dyes was added to ionic liquids, there was a large reduction in fluorescence. Although this fluorescence drop was believed to occur to removal of the dye molecule from the helix, the strength of this interaction has not been researched.
In this thesis, the interaction between different intercalating dyes and different ionic liquids was evaluated. We reasoned that perhaps the difference in interaction could be used as a method of separating the DNA-dye complex, which has previously never been accomplished. For example, it has been established that both DNA and cationic dyes have an affinity for ionic liquids. The relative strength of this affinity is undetermined, as well as the comparison to normal aqueous mediums. Although ionic liquids can drastically alter the stability of the DNA duplex by either raising or decreasing the melting point depending on the ionic liquid chosen, we found that the DNA actually has a higher affinity for the aqueous phase. Conversely, intercalating dyes prefer to partition into the ionic phase. The relative affinities of the two components are strong enough for their respective phases that the complex can be split apart and each component can be extracted, allowing for separation of the two.
|
8 |
DNA in Ionic Liquids and PolyelectrolytesKhimji, Imran January 2013 (has links)
DNA has been widely studied in a variety of solvents. The majority of these solvents consist of either aqueous or organic components. The presence of ions or salts in these solvents can further alter DNA properties by changing the melting point or helical structure. The size, charge, and concentration of these additional components can all affect the behaviour of DNA. A new class of solvents, known as ionic liquids have recently gained popularity. Ionic liquids are comprised of entirely of ions and can be liquid at room temperature. Due to their low volatility and ability to dissolve both polar and non-polar substances, they are generating high levels of interest as ‘green solvents’. Although the interaction between DNA and ionic liquids has been characterized, the potential of this interaction is still being studied. It was discovered that when DNA mixed with DNA intercalating dyes was added to ionic liquids, there was a large reduction in fluorescence. Although this fluorescence drop was believed to occur to removal of the dye molecule from the helix, the strength of this interaction has not been researched.
In this thesis, the interaction between different intercalating dyes and different ionic liquids was evaluated. We reasoned that perhaps the difference in interaction could be used as a method of separating the DNA-dye complex, which has previously never been accomplished. For example, it has been established that both DNA and cationic dyes have an affinity for ionic liquids. The relative strength of this affinity is undetermined, as well as the comparison to normal aqueous mediums. Although ionic liquids can drastically alter the stability of the DNA duplex by either raising or decreasing the melting point depending on the ionic liquid chosen, we found that the DNA actually has a higher affinity for the aqueous phase. Conversely, intercalating dyes prefer to partition into the ionic phase. The relative affinities of the two components are strong enough for their respective phases that the complex can be split apart and each component can be extracted, allowing for separation of the two.
|
9 |
Molecular self-assembly design, synthesis, and characterization of peptidic materials for bio- and nano-technologies /Lamm, Matthew S. January 2008 (has links)
Thesis (Ph. D.)--University of Delaware, 2007. / Principal faculty advisor: Darrin J. Pochan, Dept. of Materials Science & Engineering. Includes bibliographical references.
|
10 |
Colloidal microcapsules: Surface engineering of nanoparticles for interfacial assemblyPatra, Debabrata 01 January 2011 (has links)
Colloidal Microcapsules (MCs), i.e. capsules stabilized by nano-/microparticle shells are highly modular inherently multi-scale constructs with applications in many areas of material and biological sciences e.g. drug delivery, encapsulation and microreactors. These MCs are fabricated by stabilizing emulsions via self-assembly of colloidal micro/nanoparticles at liquid-liquid interface. In these systems, colloidal particles serve as modular building blocks, allowing incorporation of the particle properties into the functional capabilities of the MCs. As an example, nanoparticles (NPs) can serve as appropriate antennae to induce response by external triggers (e.g. magnetic fields or laser) for controlled release of encapsulated materials. Additionally, the dynamic nature of the colloidal assembly at liquid-liquid interfaces result defects free organized nanostructures with unique electronic, magnetic and optical properties which can be tuned by their dimension and cooperative interactions. The physical properties of colloidal microcapsules such as permeability, mechanical strength, and biocompatibility can be precisely controlled through the proper choice of colloids and preparation conditions for their. This thesis illustrates the fabrication of stable and robust MCs through via chemical crosslinking of the surface engineered NPs at oil-water interface. The chemical crosslinking assists NPs to form a stable 2-D network structure at the emulsion interface, imparting robustness to the emulsions. In brief, we developed the strategies for altering the nature of chemical interaction between NPs at the emulsion interface and investigated their role during the self-assembly process. Recently, we have fabricated stable colloidal microcapsule (MCs) using covalent, dative as well as non-covalent interactions and demonstrated their potential applications including encapsulation, size selective release, functional devices and biocatalysts.
|
Page generated in 0.0774 seconds