• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • Tagged with
  • 55
  • 55
  • 21
  • 12
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Homogeneous catalysts for the synthesis of oxygenated polymers

Thevenon, Arnaud January 2017 (has links)
This thesis describes the synthesis and characterisation of novel mono and dinuclear homogenous [Zn(II)] and [In(III)] metal complexes. Their applications as catalysts for CO<sub>2</sub>/epoxide or epoxide/anhydride ring opening copolymerisation and lactide ring opening polymerisation to generate polycarbonates and polyesters, respectively, are also reported. Chapter 3 reports the first indium phosphasalen catalysts for CO<sub>2</sub>/cyclohexene oxide ring opening copolymerization. The catalysts are active at 1 bar pressure of CO<sub>2</sub> and are most effective without any co-catalyst. It is also possible to use the complexes to isolate and characterise the key intermediates in the catalytic cycle. Kinetic and spectroscopic analyses show that polymerisation proceeds via a rare cis-mononuclear coordination- insertion mechanism. Chapter 4 describes a series of mono and dinuclear zinc macrocycle catalysts with very high activities for the racemic lactide ring opening polymerisation. In most cases, the dinuclear zinc catalysts significantly out-perform the mono-zinc homologue. In addition, kinetic and spectroscopic investigations suggest a role for the ligand conformation in mediating rate. The catalysts perform very well under immortal conditions and operate at low catalyst loading, whilst conserving high activities. Chapter 5 presents four dinuclear zinc acetate salen catalysts for the ring opening copolymerisation of CO<sub>2</sub>/cyclohexene oxide and phthalic anhydride/cyclohexene oxide. The catalysts show moderate activities for CO<sub>2</sub>/epoxide copolymerisation but are highly active for epoxide/anhydride copolymerisation. Structure/activity relationship studies reveal that the more flexible and electron donating ligand displays the highest activity. Poly(ester-b-carbonate)s are also afforded using the most active catalyst in terpolymerisations of anhydride/epoxide/CO<sub>2</sub>.
52

Investigating the chemistry of cationic rhodium bisphosphine complexes : comparing reactivity in the solid state with solution

Pike, Sebastian David January 2014 (has links)
This thesis describes the synthesis and characterisation of a series of cationic rhodium bis-phosphine complexes. The reactivity of these new complexes in the solid-state and in solution is reported. In <b>Chapter 2</b> the synthesis of a series of rhodium bis-phosphine diene complexes is presented and the reactions of these complexes with hydrogen in the solid-state are investigated. Several examples of zwitterionic complexes coordinating the [BAr<sup>F</sup>4]<sup>─</sup> anion are produced by hydrogenation. A rare example of a sigma-alkane complex, [Rh(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)(eta<sup>2</sup>-<sub>CH</sub>-eta<sup>2</sup>-<sub>CH</sub>-NBA][BAr<sup>F</sup>4]<sup>─</sup], is also formed in the solid-state, by a single crystal to single crystal transition driven by hydrogen. This complex is crystallographically characterised and displays two short Rh∙∙∙H−C sigma-interactions. Deuteration studies indicate that the agostic complex [Rh(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)(eta<sup>2</sup>-<sub>CH</sub>-eta<sup>2</sup>-<sub>CH</sub>-NBE][BAr<sup>F</sup>4] may form as a short lived intermediate prior to the formation of the sigma-alkane complex. The temporal evolution of the solid-state hydrogenation reactions is monitored by powder X-ray diffraction methods. In <b>Chapter 3</b> the C−X activation of various aryl halides using the [Rh(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)]<sup>+</sup> fragment is reported. The 'ligand innocence' of the phosphine with respect to intramolecular C−H activation is also discussed. A rare example of C−X activation in the solid-state is presented, which shows the formation of an isomer that is not observed by analogous solution routes. <b>Chapter 4</b> investigates solid-state ligand exchange reactions using ethene, butadiene, CO and NH3 gases. A solid-state transfer dehydrogenation reaction is reported within single crystals of [Rh(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>][BAr<sup>F</sup>4]. H/D exchange of NH3 can also occur in the solid state in the bis-ammonia complex [Rh(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)(NH<sub>3</sub>)<sub>2</sub>][BAr<sup>F</sup>4]. A variety of rhodium complexes are tested as heterogeneous catalysts for the hydrogenation of ethene and the isomerisation of butene. In <b>Chapter 5</b> the binding affinity of a variety of fluorinated arenes to rhodium bis-phosphine fragments is presented using ESI-MS methods. The dependence upon the arene substituents, phosphine substituents and phosphine bite angle are discussed.
53

Synthesis and characterisation of permethylpentalene complexes and permethylpentalene derivatives

Binding, Samantha Carys January 2015 (has links)
This thesis expands the scope for using the permethylpentalene ligand and its precursors in the synthesis of organometallic complexes. <strong>Chapter one</strong> begins with a brief review of linked metallocenes, with which multimetallic compounds bridged by pentalene ligands have often been compared, followed by a comprehensive review of the routes used to make pentalenes and substituted pentalenes. Organometallic compounds of pentalenes are introduced, with a focus on bimetallic systems. <strong>Chapter two</strong> explores the diversification of substituents added to the permethylpentalene (Pn*) precursor WeissH<sub>4</sub>, to include ethyl and isopropyl groups. Low-symmetry mono-, di-, tri- and tetraalkylated products are formed, eight such organic molecules have been identified by NMR spectroscopy, and two characterised crystallographically. It has been demonstrated that subsequent hydrolysis and decarboxylation of two of these products produces low-symmetry alkylpentalene precursors. The chapter concludes with discussions on the selectivity exhibited in these reactions, and the assignment of stereochemistry. <strong>Chapter three</strong> describes the synthesis of the first homoleptic double metallocene complex of iron. Fe<sub>2</sub>Pn*<sub>2</sub> has been characterised by X ray diffraction, and cyclic voltammetry studies demonstrate four accessible oxidation states (-1, 0, +1, +2). Magnetic measurements in the solid and solution state reveal an unusual triplet configuration, and DFT calculations indicate the origin of a high magnetic moment likely resides in unquenched orbital angular momentum contributions from SOMOs which have metal d character. Fe<sub>2</sub>Pn*<sub>2</sub> is EPR silent at 5, 40, and 300 K both in solution and the solid state, suggesting a large zero-field splitting parameter. The reaction of the di-iron complex with carbon monoxide, ethylene and H2 is reported; the bimetallic CO adduct, Fe<sub>2</sub>(&mu; &eta;<sup>5</sup>,&eta;<sup>3</sup> Pn*)(&mu; &eta;<sup>5</sup>,&eta;<sup>1</sup> Pn*)(CO)<sub>2</sub>, has been crystallographically characterised, and contains a highly distorted allylic bonding motif, which to the author’s knowledge is believed to be unique among iron complexes. <strong>Chapter four</strong> discusses the interaction of the bidentate Pn* ligand in anti bimetallic fused metallocenes. A new ligand exchange route has been developed to access the complexes (MCp)<sub>2</sub>Pn* (M = Co, Ni), and the isostructural complexes (MCp*)<sub>2</sub>Pn* have been made for M = Fe, Co, Ni by salt metathesis reactions. All five complexes have been characterised by single crystal X-ray crystallography, and have diamagnetic ground states in solution in common with their Pn bridged analogues. Variable temperature NMR studies reveal a spin-equilibrium between S = 0 and S = 1 in the dinickel complexes. DFT calculations reproduce the spin states found, and suggest the distortion towards &eta;<sup>3</sup> coordination observed on crossing from Fe, to Co, to Ni, results from population of orbitals with M―bridgehead antibonding character. The electronic structures show it is important to draw comparisons between isoelectronic linked metallocenes. Electrochemical studies on the diiron, dicobalt, and (NiCp)<sub>2</sub>Pn* complexes reveal at least three redox events for each. <strong>Chapter five</strong> documents the successful synthesis and characterisation of monometallic complexes of iron and manganese with Pn*H ligands. The isostructural complexes Fe(Pn*H)<sub>2</sub> and Mn(Pn*H)<sub>2</sub> can have been characterised crystallographically, and are potential precursors for accessing heterometallic, and multimetallic complexes. Mn(Pn*H)<sub>2</sub> is a rare example of a manganese sandwich compound and magnetic studies on a single isomer in the solution and solid states suggest it adopts intermediate spin states of S = 2 in solution, and S = 3/2 in the solid state. <strong>Chapter six</strong> gives experimental details for all syntheses and studies described in the preceding chapters. <strong>Chapter seven</strong> provides characterising data for all new compounds. Fitting data for VT NMR and SQUID studies are provided in the <strong>appendix</strong> at the end of this thesis. Crystallographic data in the form of .cif files, DFT output files, and raw SQUID data, can be found in the <strong>electronic appendix</strong>.
54

Hybrid ferrocene-based systems

Kelly, Michael Jon January 2014 (has links)
This thesis explores the capacity of sterically and electronically unsaturated boranes to bind substrates of biological and environmental interest, and transduce such binding events into a photo-physical and/or electrochemical response, hence reporting the presence of these substrates. Chapter three details the synthesis of a range of novel ferrocenyl boranes featuring either a proximal hydrogen-bond donor or a second Lewis acidic centre. These novel boranes were shown to be competent at binding both cyanide and fluoride anions, with the role played by a proximal hydrogen-bond donor or a second Lewis acidic centre in anion binding investigated by both NMR and crystallographic studies. Chapter four reports the synthesis of novel pyridinyl and related boronic esters, as well as unexpected mixed alkenyl/aryl boranes. The capacity of both types of system to bind fluoride or cyanide anions in solution was investigated by UV-Vis and NMR studies. The photo-physical responses to these anions were also probed, leading to the establishment of both switch-on and switch-off fluorescent responses. Chapter five extends the knowledge derived from selective anion receptor design and combines this with recent developments in the field of frustrated Lewis pairs (FLPs) to activate, bind and report the presence of nitrous oxide (N<sub>2</sub>O) molecule. Thus, the syntheses of novel, highly Lewis acidic ferrocenyl boranes that incorporate a high degree of steric loading around the boron centre are reported. The electrochemical and photo-physical response of an FLP system to the presence of N<sub>2</sub>O was investigated leading to the development of a novel N<sub>2</sub>O reporting system.
55

Atomic and electronic structure of complex metal oxides during electrochemical reaction with lithium

Griffith, Kent Joseph January 2018 (has links)
Lithium-ion batteries have transformed energy storage and technological applications. They stand poised to convert transportation from combustion to electric engines. The discharge/charge rate is a key parameter that determines battery power output and recharge time; typically, operation is on the timescale of hours but reducing this would improve existing applications and open up new possibilities. Conventionally, the rate at which a battery can operate has been improved by synthetic strategies to decrease the solid-state diffusion length of lithium ions by decreasing particle sizes down to the nanoscale. In this work, a different approach is taken toward next-generation high-power and fast charging lithium-ion battery electrode materials. The phenomenon of high-rate charge storage without nanostructuring is discovered in niobium oxide and the mechanism is explained in the context of the structure–property relationships of Nb2O5. Three polymorphs, T-Nb2O5, B-Nb2O5, and H-Nb2O5, take bronze-like, rutile-like, and crystallographic shear structures, respectively. The bronze and crystallographic shear compounds, with unique electrochemical properties, can be described as ordered, anion-deficient nonstoichiometric defect structures derived from ReO3. The lessons learned in niobia serve as a platform to identify other compounds with related structural motifs that apparently facilitate high-rate lithium insertion and extraction. This leads to the synthesis, characterisation, and electrochemical evaluation of the even more complicated composition–structure–property relationships in ternary TiO2–Nb2O5 and Nb2O5–WO3 phases. Advanced structural characterisation including multinuclear solid-state nuclear magnetic resonance spectroscopy, density functional theory, X-ray absorption spectroscopy, operando high-rate X-ray diffraction, and neutron diffraction is conducted throughout to understand the evolution of local and long-range atomic structure and changes in electronic states.

Page generated in 0.0869 seconds