• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The preparation and characterisation of mixed-anion and non-oxide materials

Headspith, David Andrew January 2009 (has links)
Traditionally, research in solid-state chemistry has focused largely on the chemistry of oxides and on chemical tailoring of the structure and physical properties via cationic substitutions. Consequentially, the chemistry of non-oxide ompounds and other means of chemical tailoring, such as anionic substitutions, have been comparatively overlooked by the scientific community. Non-oxides offer a wide diversity of chemistry, most noticeable in unusual oxidation states and coordination geometries found for metals in these compounds. Furthermore, the development of anionic substitutions could open up an alternative avenue for the modification of the structure and properties in solids and the preparation of novel compounds. The work reported here covers: (1) the preparation of non-oxide compounds (Ba2CoS3, Ba2MnS3, Ce2MnN3, Ce2-xLaxMnN3) and mixed-anion compounds (Ce2MnN3F2-δ, apatite oxide-nitrides) via direct synthesis and/or cationic and anionic substitutions; (2) the characterisation of their structure and (3) the characterisation of selected physical properties. The three-dimensional magnetic cell of Ba2CoS3, which undergoes a transition to long-range order at 46 K, was found to be double the size of the crystallographic unit cell, along the c-axis. A conclusive representation of the magnetic cell of Ba2MnS3, with similar structure to Ba2CoS3, could not be achieved and two possible models are proposed. A one-step synthetic route for Ce2MnN3, more convenient than the route reported in the literature, was developed in this work. Cationic substitutions led to the preparation of the solid solution Ce2-xLaxMnN3 and anionic manipulation of the lattice, via fluorination, led to the preparation of the first example of a quaternary nitride-fluoride Ce2MnN3F2-δ. The structure of Ce2MnN3F2-δshowed layers of distorted MnN5F octahedra and staged fluorine occupancy of the interstitial sites. A range of novel oxide-nitrides were prepared via reaction of the apatite-type oxides La9.33Si6O26, La8+xSr2−xM6O26+x/2 (M = Si, Ge; 0 less than or equal to x less than or equal to 2), La9.67Si5CoO26 and La10M5CoO26.5 (M = Si, Ge) with gaseous ammonia at temperatures above 700°C, most retaining the apatite structure with nitrogen located in interstitial sites.
2

Palladium mediated allylic fluorination

Hollingworth, Charlotte January 2013 (has links)
In this thesis, the construction of the allylic fluorides under palladium catalysis was investigated. Chapter 1 provides a general introduction to organofluorine compounds and the use of palladium for the formation of both Csp<sup>2</sup>- and Csp<sup>3</sup>-F bonds. The aims of the thesis are presented. In Chapter 2 the identification that a p-nitrobenzoate is the optimum leaving group under Pd-catalysis to give allyl fluorides is described. A range of allylic fluorides was synthesized in 35->95% yield using the nucleophilic fluorinating reagent, TBAF(tBuOH)<sub>4</sub>. To further develop this transformation we have examined the effect of a variety of leaving groups and phosphine ligands. This methodology led to the development of the first transition metal mediated C-<sup>18</sup>F bond formation. The development of Ir-catalysed fluorination of allylic carbonates to give allylic fluorides is also discussed. This system provided access to branched, E- and Z-linear allylic fluorides in a regioselective manner. This methodology was also translated to <sup>18</sup>F radiochemistry. In Chapter 3 the synthesis of allylic fluorides via a C-H functionalisation with Pd and nucleophilic source of fluorine was investigated. Comprehensive screening of Pd sources, fluoride reagents and additives was performed. The presence of a quinone was found to be crucial for this transformation. Chapter 4 describes the synthesis and characterization of a series of allylpalladium(II) complexes and their subsequent reactivity towards a range of electrophilic fluorination reagents. Chapter 5 gives full experimental procedures and characterization data for all compounds.

Page generated in 0.1024 seconds