Spelling suggestions: "subject:"chemosensory neurons"" "subject:"thermosensory neurons""
1 |
Rôle et fonctionnalité des récepteurs gustatifs dans les ailes de drosophiles / Role and function of drosophila taste receptors in drosophila wingsRaad, Hussein 25 January 2013 (has links)
Les capacités cognitives pour assurer l’exploration et la découverte de nouvelles niches écologiques sont au cœur des processus d’adaptation et de survie des espèces vertébrés et invertébrés. A cet égard, les systèmes neuronaux chimio-sensoriels composés des organes olfactifs et gustatifs permettent le guidage et repérage des sources de nourritures et/ou des partenaires sexuels. Un fait marquant chez les insectes et en particulier la drosophile réside dans le fait que les organes gustatifs sont disséminés sur le corps. La bordure antérieure de l’aile est tapissée avec des sensilles gustatives alternées avec des sensilles mécaniques. La fonctionnalité et le rôle des cellules gustatives au niveau de l’aile de la drosophile reste énigmatique et à ce jour largement inconnue (Stocker, 1994). Notre travail a consisté à explorer la signalisation et le mécanisme de transduction de ces récepteurs et à questionner leur importance dans l’adaptation des insectes à leur écosystème. Nos résultats portent sur trois volets. Nous avons vérifié que l’expression des récepteurs du goût est effective dans les ailes des trois insectes différents (drosophiles, pucerons et abeilles) par RT-PCR. Nous avons ensuite étudié la fonctionnalité de ces récepteurs vis-à-vis des molécules sucrées et amères à l’aide d’une souche transgénique (G-CaMP), qui exhibe une forte fluorescence provoquée par des piques de calcium cytosolique. Enfin, des tests comportementaux ont été réalisé avec une souche transgénique (Poxn*) dans laquelle les sensilles chimio-sensorielles de l’aile sont spécifiquement invalidés sans altérer les autres structures olfactives et/ou gustatives. Les résultats montrent un effet significatif des cellules chimio-sensorielles de l’aile quant à l’orientation dans l’espace et à l’apprentissage Bayesien. Nos résultats sur ces trois volets nous ont permis d’élaborer des hypothèses au regard de l’évolution neuroanatomique de l’aile des insectes depuis les organismes ancestraux d’origine marine desquels ils dérivent. Des experts en aérodynamiques proposent la création d’un vortex durant le vol qui forme une spirale de courant d’air le long de la bordure antérieur de l’aile. La parfaite superposition entre ce vortex et le nerf costal de l’aile nous permet de déduire que les vibrations de l’aile entre 50 et 1.000 Hertz chez les insectes sont en mesure de nébuliser des matériaux (micro poussières, micro gouttelettes, molécules faiblement volatiles) lesquels vont être captés/entrainés dans le vortex et adressés aux sensilles gustatives. Notre hypothèse est que ce mécanisme permettrait aux insectes pollinisateurs de gouter les fleurs sans se poser et sans mettre à contribution la trompe buccale (proboscis). Ce scénario permettrait de dissocier le goût de l’ingestion digestive en évitant les empoisonnements par des molécules toxiques émises par les plantes et d’autre part il rend l’exploration plus efficace, en minimisant le temps de recherche. / Cognitive capacities used to ensure the exploration and discovery of new ecological niches are at the heart of the process of adaptation and survival of vertebrate and invertebrate species. In this respect, the neural chemosensory systems, composed of the olfactory and gustatory organs, allow the guidance and finding of food sources and/or sexual partners. A striking feature in insects and particularly in Drosophila is that gustatory organs are disseminated in the body. The anterior margin of the wing is lined with gustatory sensilla alternated with mechanosensory sensilla. The function of gustatory cells in the wing of Drosophila remains enigmatic and actually quite unknown (Stocker, 1994). Our work consisted in exploring the signaling and the transduction mechanisms of these receptors and in questioning their importance in the adaptation of insects to their ecosystem. Our results are based on three components. We have verified that the expression of gustatory receptors occurs in the wings of three different insects (Drosophila, aphid and honey bee) by RT-PCR. We have studied the function of these receptors vis-à-vis of sweet and bitter molecules using a transgenic line (G-CaMP) that exhibits a strong fluorescence provoked by cytosolic calcium picks. Finally, behavioral assays have been realized with a transgenic line (Poxn*) in which the chemosensory sensilla have been invalidated without altering the other olfactory and gustatory structures. Our results show a significant effect of wing chemosensory cells as far as orientation is space and Bayesian learning and have permitted us to elaborate hypothesis regarding the neuroanatomical evolution of the wing of insects since ancestral organisms of marine origin from which they derive. Experts in aerodynamics propose the creation of a vortex during flight that forms a spiral of air along the anterior border of the wing. The perfect superposition between this vortex and the costal nerve of the wing allows us to deduce that the vibrations of the insect wing between 50 and 1.000 Hertz are able to nebulize materials (microdust, microdrops, weakly volatile molecules), which are captured/trapped in the vortex and addressed to the gustatory sensilla. Our hypothesis is that this mechanism would let pollinator insects taste flowers without landing and without involving the proboscis. In this scenario insects would dissociate taste from ingestion, avoiding poisoning by toxic molecules emitted by plants and rending exploration more efficient by minimizing searching time.
|
Page generated in 0.0555 seconds