Spelling suggestions: "subject:"cherchuonnes character"" "subject:"bergeronnes character""
1 |
O caráter de Chern-Connes calculado em 0 cl (S 1 ) e 0 cl (S 2 ) / The Chern-Connes character calculate in 0 cl (S 1 ) and 0 cl (S 2 )Sá, Lucas Santos de 23 April 2019 (has links)
Este trabalho busca explorar a definição dada por Connes em [Con01] do caráter de Chern para a geometria não-comutativa. Construímos os funtores K 0 e K 1 com os principais resultados para demonstrarmos a Sequência Exata de Seis Termos e a Sequência de Mayer-Vietoris. Calculamos os grupos de K-teoria de algumas álgebras de operadores pseudo-diferenciais clássicos de ordem zero. Posteriormente usamos as sequências exatas para calcular explicitamente o caráter de Chern-Connes nos C -sistemas dinâmicos. / This work intends to explore the definition given by Connes in [Con01] of the Chern charac- ter for noncommutative geometry. We construct the functors K 0 and K 1 with the main results to demonstrate the Exact Sequence of Six Terms and the Sequence of Mayer Vietoris. We compute the K-groups of some algebras of classical zero-order pseudo-differential operators. We then use the exact sequences to explicitly calculate the Chern-Connes Character of C -dynamic systems.
|
2 |
O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebrasDias, David Pires 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
|
3 |
O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebrasDavid Pires Dias 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
|
Page generated in 0.089 seconds