• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of polynomial profiles and input shaping for industrial applications

Pridgen, Brice 05 April 2011 (has links)
Command shaping creates reference commands that reduce residual vibrations in a flexible system. This thesis examines the use of command shaping for flexible system control in three industrial applications: cam-follower systems, sloshing liquids, and cherrypickers. One common type of command shaping is command smoothing which creates a smooth transition between setpoints. A specific type of command smoothing used in cam-follower systems is the polynomial profile. An alternative technique to reduce vibration in flexible systems is input shaping. In this thesis, input-shaped commands are compared to polynomial profiles for applications requiring both vibration suppression and fast motion. Simulation and experimental results show that input shaping is faster than polynomial profiles and provides a simple approach to suppressing residual vibration. Secondly, significant experimental contributions have been made in the area of slosh control. The oscillation of liquids in a container can cause liquid spillage or can cause stability issues, especially in space vehicles. In the past, a number of control techniques have been proposed, but only a few recommend the use of input shaping. This thesis describes the use of command shaping to limit slosh. Results are supported by numerical and experimental testing. Input-shaped commands reduce residual slosh amplitude compared to unshaped commands and polynomial profiles. Input-shaped commands can also accommodate uncertainties and changes in the sloshing frequencies. Lastly, a small-scale cherrypicker was constructed to study the use of input-shaping control on these types of aerial lifts. Cherrypickers have flexible dynamic effects that can cause dangerous and life-threatening situations. To study this class of machines and to provide future students an experimental testbed, several design criteria were established before construction began. The resulting machine achieved most design objectives, including a simple-to-use graphical user interface and accurate state measurements. Robust input-shaping controllers were implemented to limit endpoint vibration. The design of the cherrypicker is discussed and experimental results are reported.
2

Dynamic characterization and analysis of aerial lifts

Hernandez, Eileen Cynthia 14 November 2012 (has links)
Aerial lifts are used to elevate people and material to high heights. There are many different types of aerial lifts which have vastly different dynamics characteristics. Thus, a new categorization for aerial lifts was created and organizes them by their kinematics. Many accidents occur while using aerial lifts. Hazards of aerial lifts and current solutions to those hazards were reviewed to understand the causes of the accidents. Some major accidents are due to the complex dynamics and flexibility of aerial lifts, such as oscillations and tip-overs. Oscillations of full-size aerial lifts were experimentally tested to determine frequencies in different configurations. Machine-motion induced oscillations of an articulating aerial lift were simulated and analyzed for both non-overcenter and overcenter configurations. Input shaping was used to achieve reduction in machine-motion induced oscillations. Tip-over stability margin was used to simulate and analyze the stability of both non-overcenter and overcenter configurations. The effect of increased platform mass on tip-over stability margin was also analyzed. The results in this thesis are a categorization of aerial lifts including their hazards and methods of reducing those hazards, an experimental verification of the dynamic response of full-size aerial lifts, a fully dynamic tip-over prediction model of double-boom articulating aerial lift by applying flexibility in the joints and realistic velocity profiles, and a detailed study of the dynamics of a double-boom articulating aerial lift.

Page generated in 0.0837 seconds