• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust Quantile Regression Using L2E

January 2012 (has links)
Quantile regression, a method used to estimate conditional quantiles of a set of data ( X, Y ), was popularized by Koenker and Bassett (1978). For a particular quantile q , the q th quantile estimate of Y given X = x can be found using an asymmetrically-weighted, absolute-loss criteria. This form of regression is considered to be robust, in that it is less affected by outliers in the data set than least-squares regression. However, like standard L 1 regression, this form of quantile regression can still be affected by multiple outliers. In this thesis, we propose a method for improving robustness in quantile regression through an application of Scott's L 2 Estimation (2001). Theoretic and asymptotic results are presented and used to estimate properties of our method. Along with simple linear regression, semiparametric extensions are examined. To verify our method and its extensions, simulated results are considered. Real data sets are also considered, including estimating the effect of various factors on the conditional quantiles of child birth weight, using semiparametric quantile regression to analyze the relationship between age and personal income, and assessing the value distributions of Major League Baseball players.

Page generated in 0.5064 seconds