Spelling suggestions: "subject:"chilean ondes"" "subject:"chilean andes""
1 |
Modeling of Permafrost Distribution in the Semi-arid Chilean AndesAzocar, Guillermo January 2013 (has links)
The distribution of mountain permafrost is generally modeled using a combination of statistical techniques and empirical variables. Such models, based on topographic, climatic and geomorphological predictors of permafrost, have been widely used to estimate the spatial distribution of mountain permafrost in North America and Europe. However at present, little knowledge about the distribution and characteristics of mountain permafrost is available for the Andes. In addition, the effects of climate change on slope stability and the hydrological system, and the pressure of mining activities have increased concerns about the knowledge of mountain permafrost in the Andes.
In order to model permafrost distribution in the semi-arid Chilean Andes between ~29°S and 32°S, an inventory of rock glaciers is carried out to obtain a variable indicative of the presence and absence of permafrost conditions. Then a Linear Mixed-Effects Model (LMEM) is used to determine the spatial distribution of Mean Annual Air Temperature (MAATs), which is then used as one of the predictors of permafrost occurrence. Later, a Generalized Additive Model (GAM) with a logistic link function is used to predict permafrost occurrence in debris surfaces within the study area.
Within the study area, 3575 rock glaciers were inventoried. Of these, 1075 were classified as active, 493 as inactive, 343 as intact and 1664 as relict forms, based on visual interpretation of satellite imagery. Many of the rock glaciers (~60-80%) are situated at positive MAAT, and the number of rock glaciers at negative MAAT greatly decreases from north to south.
The results of spatial temperature distribution modeling indicated that the temperature changes by -0.71°C per each 100 m increase in altitude, and that there is a 4°C temperature difference between the northern and southern part of the study area. The altitudinal position of the 0°C MAAT isotherm is situated at ~4250 m a.s.l. in the northern (29°S) section and drops latitudinally to ~4000 m a.s.l. in the southern section (32°S) of the study area.
For permafrost modeling purposes, 1911 rock glaciers (active, inactive and intact forms) were categorized into the class indicative of permafrost presence and 1664 (relict forms) as non-permafrost. The predictors MAAT and Potential Incoming Solar Radiation (PISR) and their nonlinear interaction were modeled by the GAM using LOESS smoothing function. A temperature offset term was applied to reduce the overestimation of permafrost occurrence in debris surface areas due to the use of rock glaciers as permafrost proxies.
The dependency between the predictor variables shows that a high amount of PISR has a greater effect at positive MAAT levels than in negative ones. The GAM for permafrost distribution achieved an acceptable discrimination capability between permafrost classes (area under the ROC curve ~0.76). Considering a permafrost probability score (PPS) ≥ 0.5 and excluding steep bedrock and glacier surfaces, mountain permafrost can be potentially present in up to about 6.8% (2636 km2) of the study area, whereas with a PPS ≥ 0.75, the potential permafrost area decreases to 2.7% (1051 km2). Areas with the highest PPS are spatially concentrated in the north section of the study area where altitude rises considerably (the Huasco and Elqui watersheds), while permafrost is almost absent in the southern section where the topography is considerably lower (Limarí and Choapa watersheds).
This research shows that the potential mountain permafrost distribution can be spatially modeled using topoclimatic information and rock glacier inventories. Furthermore, the results have provided the first local estimation of permafrost distribution in the semi-arid Chilean Andes. The results obtained can be used for local environmental planning and to aid future research in periglacial topics.
|
2 |
Different styles of deformation of the fore-arc wedge along the Chilean convergent margin : insights from 3D numerical experimentsKellner, Antje January 2007 (has links)
The styles of deformation of the fore-arc wedges along the Chilean convergent margin are observed to vary significantly, despite similar plate kinematic conditions. Here, I focus on the analysis of fore-arc deformation on two regions along the Chilean convergent margin at 20°-24°S and 37°-42°S. Although both regions are subjected to the oblique subduction of the oceanic Nazca plate and backstopped by the Andes mountain chain; they display different patterns of deformation.
The northern Chilean study area (20° - 24°S) is characterized by an exceptionally thick crust of about 60 km beneath the Altiplano – Puna plateau, lack of an accretionary wedge in the fore-arc due to hyperarid climate, and consequently a sediment starved trench. Two major margin parallel strike slip faults are observed in this area, the Atacama Fault Zone (AFZ) and the Precordilleran Fault System (PFS). Both strike-slip faults do not exhibit significant recent displacement.
The southern study area (37° - 42°S), compared to the northern study area, is characterized by lower topography, high precipitation rates (~2000 mm/yr), and a younger subducted oceanic plate. An active strike-slip fault, the Liquiñe-Ofqui-Fault-Zone (LOFZ), shows ~1 cm/yr recent dextral movement and shapes the surface of this area. Thus, the southern Chilean study area exhibits localized strike-slip motion. Within this area the largest earthquake ever recorded, the 1960 Valdivia earthquake, occurred with a moment magnitude of MW=9.5.
I have constructed 2D thermal models and 3D mechanical models for both Chilean study areas to study processes related to active subduction. The applied numerical method is the finite element technique by means of the commercial software package ABAQUS.
The thermal models are focused on the thermal conditions along the plate interface. The thermal structure along the plate interface reveals the limits of coupling but also the type of transition from coupled to uncoupled and vice versa. The model results show that shear heating at the plate interface is an important mechanism that should be taken into account. The models also show that the thermal condition at the downdip limit of the coupling zone leads to a sharp decrease of friction along the interface. Due to the different geometries of the two Chilean study areas, such as the slab dip and the thickness of the continental crust, the downdip limit of the southern study area is slightly shallower than that of the northern study area. The results of the 2D thermal models are used to constrain the spatial extent of the coupling zone in the 3D mechanical models.
3D numerical simulations are used to investigate how geometry, rheology and mechanical parameters influence strain partitioning and styles of deformation in the Chilean fore-arc. The general outline of the models is based on the fore-arc geometry and boundary conditions as derived from geophysical and geological field data. I examined the influence of different rheological approaches and varying physical properties of the fore-arc to identify and constrain the parameters controlling the difference in surface deformation between the northern and southern study area.
The results of numerical studies demonstrate that a small slab dip, a high coefficient of basal friction, a high obliquity of convergence, and a high Young’s modulus favour localisation of deformation in the fore-arc wedge. This parameter study helped me to constrain preferred models for the two Chilean study areas that fit to first order observations. These preferred models explain the difference in styles of deformation as controlled by the angle of obliquity, the dip of subducting slab, and the strength of wedge material. The difference in styles can be even larger if I apply stronger coupling between plates within the southern area; however, several independent observations indicate opposite tendency showing southward decrease of intensity of coupling.
The weaker wedge material of the preferred model for the northern study area is associated with advanced development of the adjacent orogen, the Central Andes. Analysis of world-wide examples of oblique subduction zones supports the conclusion that more mature subduction zones demonstrate less pronounced localization of strike-slip motion. / Die Deformationsmuster der Fore-Arc Keile entlang des chilenischen konvergenten Plattenrandes variieren beachtlich, trotz ähnlicher plattenkinematischer Randbedingungen. In dieser Arbeit konzentriere ich mich auf die Analyse der Deformation des Fore-Arcs in zwei Gebieten entlang des chilenischen konvergenten Plattenrandes zwischen 20°-24°S und 37°-42°S. Obwohl beide Gebiete durch schiefe Subduktion der ozeanischen Nazca Platte und der östlichen Begrenzung durch die Andine Gebirgskette gekennzeichnet sind, zeigen sie unterschiedliche Deformationsmuster an der Oberfläche.
Das nördliche chilenische Gebiet (20° - 24°S) ist gekennzeichnet durch eine außergewöhnliche Krustendicke von ~ 60 km unterhalb des Altiplano - Puna Plateaus, dem Fehlen eines akkretionären Prismas im Fore-Arc aufgrund des trockenen Klimas und somit einer nahezu sedimentfreien Tiefseerinne. Zwei große Plattenrand-parallele Strike-Slip Störungen werden in diesem Gebiet beobachtet, die Atacama Fault Zone (AFZ) und das Precordilleran Fault System (PFS). Beide Strike-Slip Störungen zeigen keine signifikanten aktuellen Bewegungsraten.
Das südliche Gebiet (37° - 42°S) ist im Vergleich zum nördlichen Gebiet durch eine niedrigere Topographie, hohe Niederschlagsraten (~2000 mm/a) und eine jüngere abtauchende ozeanische Platte gekennzeichnet. Die aktive Strike-Slip Störung, Liquiñe-Ofqui-Fault-Zone (LOFZ), ist gekennzeichnet durch aktuelle dextrale Bewegungsraten von 1 cm/a und prägt die Oberflächenstruktur in dieser Region. Folglich ist der südliche Arbeitsbereich durch lokalisierte Strike-Slip Bewegung charakterisiert. Innerhalb dieses Gebietes ereignete sich das größte instrumentell aufgezeichnete Erdbeben, das 1960 Valdivia Erdbeben, mit einer Stärke von MW=9.5.
2D thermische Modelle und 3D mechanische Modelle wurden für die beiden chilenischen Gebiete konstruiert, um Prozesse im Zusammenhang mit aktiver Subduktion zu untersuchen. Als numerisches Verfahren wurde die Finite Elemente Methode mit Hilfe des kommerziellen Softwarepakets ABAQUS angewandt.
Die thermischen Modelle sind auf die thermischen Konditionen entlang der Plattengrenzfläche fokussiert. Die thermische Struktur entlang der Plattengrenzfläche zeigt die Grenzen der Kopplung an aber auch die Art des Überganges von gekoppelt zu nicht gekoppelt und umgekehrt. Die Modellergebnisse zeigen, dass Heizen infolge der Scherung an der Plattengrenzfläche ein wichtiger Faktor ist, der in Betracht gezogen werden sollte. Die Modelle zeigen auch, dass die thermische Struktur an der unteren Begrenzung der Koppelzone zu einer deutlichen Abnahme der Reibung entlang der Grenzfläche führt. Aufgrund der unterschiedlichen Geometrien der zwei chilenischen Untersuchungsgebiete, z.B. Abtauchwinkel der ozeanischen Platte und Krustendicke, ist die untere Begrenzung der Koppelzone des südlichen Untersuchungsgebietes in geringerer Tiefe als die des nördlichen Gebietes. Die Ergebnisse der thermischen 2D Modelle werden genutzt, um die räumliche Ausdehnung der Koppelzone in den mechanischen 3D Modellen festzulegen.
Numerische 3D Simulationen werden genutzt, um zu verstehen, wie Geometrien, Rheologien und mechanische Parameter die Verformungspartitionierung und das Deformationsmuster im chilenischen Fore-Arc beeinflussen. Ich habe den Einfluss unterschiedlicher rheologischer Ansätze und unterschiedlicher physikalischer Eigenschaften auf den Fore-Arc untersucht, um Parameter zu identifizieren und zu bestimmen, die den Unterschied des Deformationsmusters zwischen dem nördlichen und südlichen Gebiet steuern.
Die Ergebnisse der numerischen Studien stellen heraus, dass ein kleinerer Abtauchwinkel der ozeanischen Platte, ein hoher basaler Reibungskoeffizient, eine hohe Konvergenzschiefe und ein großer Elastizitätsmodul die Lokalisierung der Deformation im Fore-Arc Keil begünstigen. Basierend auf dieser Parameterstudie habe ich Modelle für die beiden chilenischen Gebiete ausgewählt, die in Beobachtungen erster Ordnung übereinstimmen. Diese ausgewählten Modelle erklären die unterschiedlichen Deformationsmuster durch eine größere Konvergenzschiefe, einen kleineren Abtauchwinkel der ozeanischen Platte und ein härteres Keilmaterial für das südliche Untersuchungsgebiet. Der Unterschied bezüglich der Deformationsmuster kann sogar größer sein, wenn ich eine größere Reibung zwischen den Platten im südlichen Gebiet anwende; jedoch zeigen einige unabhängige Beobachtungen eine umgekehrte Tendenz: eine Abnahme der Intensität der Koppelung von Nord nach Süd.
Das schwächere Keilmaterial des ausgewählten Modells für das nördliche Untersuchungsgebiet steht im Zusammenhang mit der fortgeschrittenen Entwicklung des angrenzenden Orogens, der zentralen Anden. Die Analyse weltweiter Beispiele von schiefen Subduktionzonen unterstützt die Schlussfolgerung, dass ältere Subduktionzonen weniger ausgeprägte Lokalisierung von Strike-Slip Bewegung aufzeigen.
|
Page generated in 0.0313 seconds