• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors affecting the saltwater-entry behavior and saltwater preference of juvenile chinook salmon, Oncorhynchus tshawytscha

Price, Carol Seals 09 April 2002 (has links)
From 1998-2000, laboratory studies were conducted to examine factors that impact saltwater-entry behavior and saltwater preference (SWP) of juvenile chinook salmon, Oncorhynchus tshawytscha. These factors included bacterial kidney disease, stress and the presence of trout, O. mykiss. An additional study investigated the orientation of the startle response of chinook salmon within a salinity gradient. All experiments were conducted in 757-1 tanks in which a stable, vertical salinity gradient was established. SWP was decreased in fish suffering from bacterial kidney disease (31 �� 20.0%), compared with control fish (85 �� 17.6%). A mild chasing stressor resulted in a 26% decrease in SWP relative to unstressed fish. After a severe handling stressor, only 20% of fish preferred salt water, compared with 100% of unstressed controls. After exposure to an overhead predator model, severely stressed fish descended into the saltwater layer, but this response was transient. The presence of non-aggressive steelhead trout did not affect SWP of chinook salmon. Chinook salmon stocked with rainbow trout displayed decreased SWP. Aggression levels in tanks with rainbow trout were higher than in tanks with only chinook salmon. The orientation of the startle response was affected by the presence of salt water. Fish that preferred salt water within a gradient responded by moving horizontally within the saltwater layer. In contrast, control fish (held only in freshwater) moved vertically within the water colunm when startled. Prior preference for salt water superseded the inclination to move upward in the water column when startled. Smoltification involves physiological, behavioral and morphological changes that prepare healthy chinook salmon for seawater residence. However, disease, stress and aggressive interactions can decrease the SWP of fish at this life history stage. Avoidance of salt water during estuarine outmigration is likely maladaptive, and may have ecological ramifications including increased risk of avian predation during outmigration and decreased fitness in the marine environment. / Graduation date: 2002
2

Characterization and the effects of stress on glucocorticoid receptors in the brains of chinook salmon (Oncorhynchus tshawytscha)

Knoebl, Iris 02 May 1995 (has links)
Graduation date: 1996
3

The effects of elevated temperature and stress on immune function in juvenile chinook salmon (Oncorhynchus tshawytscha)

Harrahy, Laura Nicole Martini 28 November 2000 (has links)
Stress, including extreme or rapidly changing temperatures, are known to have deleterious effects on fish health and physiology. This thesis examines the combined effects of elevated acclimation temperature and acute handling stress on the number of antibody producing cells, plasma lysozyme concentrations, and the number of pronephric leukocytes in juvenile chinook salmon (Oncorhynchus tshawytscha). An additional goal of this thesis was to explore the effects of a temperature fluctuation, as a potential instigator of thermal shock, on innate immunity in wild fall chinook salmon of the Columbia River, specifically to determine if there are effects on plasma lysozyme concentrations and on the frequencies of lymphocytes, neutrophils, and thrombocytes in circulation. Finally, based on results found in an experiment involving elevated acclimation temperature, the relationship between the number of antibody producing cells and fish body weight was examined. Plasma lysozyme concentrations and the number of pronephric leukocytes were both affected by acclimation to 21��C compared to 13��C. While a positive relationship was found between temperature and lysozyme, an inverse relationship was found between temperature and the number of pronephric leukocytes. Plasma lysozyme concentrations, the number of pronephric leukocytes, and the number of antibody producing cells did not respond to the stressor, and the combination of elevated temperature and stress did not have an additive effect on any of the physiological or immunological variables studied. Differences between controls and temperature-treated fish were not detected among individual time points throughout a temperature fluctuation experiment, despite overall responses in plasma lysozyme concentrations and the frequencies of circulating lymphocytes. The frequencies of circulating neutrophils and thrombocytes did not respond to the thermal stressor. Finally, a significant positive relationship was detected between the number of antibody producing cells (assessed by a hemolytic plaque assay) and body weight among non-stressed fish acclimated to 21��C and 13��C. Regardless of acclimation temperature, these results emphasize the importance of the standardization of fish size for immunological experiments. Results from this thesis suggest that some components of innate immunity are affected by elevated acclimation temperatures and that the adaptive immune system is affected by acclimation temperature differently in small and large fish. / Graduation date: 2001

Page generated in 0.1057 seconds