• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 324
  • 60
  • 59
  • 29
  • 24
  • 20
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 13
  • 11
  • Tagged with
  • 1370
  • 247
  • 190
  • 109
  • 96
  • 95
  • 94
  • 92
  • 85
  • 83
  • 76
  • 75
  • 73
  • 68
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Evolutionary and Physiological Adaptation of Pseudomonas aeruginosa to Elevated Concentrations of Sodium Chloride

Taha, Mariam 23 November 2011 (has links)
I have investigated the evolutionary response of Pseudomonas aeruginosa to salt (NaCl) stress, and the physiological mechanisms responsible for this adaptation. Populations of P. aeruginosa founded from the same ancestral genotype were selected at three different concentrations of NaCl, low, moderate and high for about 660 generations with four independent replicates for each concentration. Adaptation was measured as the fitness of the evolved populations relative to the ancestor assessed in direct, head-to-head competition experiments conducted in the same environment in which they were selected (direct response) as well as in all alternative environments (correlated response). Results suggest that selection in each salt environment led to adaptation to that environment and a modest degree of specialization that evolved because correlated responses to selection were smaller than direct responses. In order to identify the physiological mechanisms contributing to the populations' adaptation in high NaCl concentration, I chose a sample of evolved lines that showed the strongest evidence for specialization to salt and competed them against the common ancestor in KCl and sucrose. Results suggested that increased Na+ /H+ antiporter activity is probably the primary mechanism behind adaptation to high NaCl concentration, however alternative mechanisms cannot be excluded. Tolerance curves, which measure the performance of a genotype across a gradient of salt concentrations, suggested no change in the high salt group’s ability to tolerate extreme concentrations of NaCl. We conclude that high salt evolved population showed improvements to its ionic/osmotic stress resistance strategies mainly to Na+ efflux strategies but with no changes to salt niche.
182

Analysis of hydrodynamic phenomena in a fluidized bed for thermochemical hydrogen production

Haseli, Yousef 01 April 2008 (has links)
This thesis examines transport phenomena of cupric chloride (CuCI2) hydrolysis within a fluidized bed. Conversions of CuCi2 and steam as a fluidizing gas are numerically investigated using a new non-catalytic gas-solid reaction model, proposed in the literature but here updated for the purposes of the present study. The results are illustrated considering two cases of kinetics for the consumption of particles: Volumetric Model and Shrinking Core Model. Consistent results in terms of the conversion of reactants versus superficial velocity, bed inventory and bed temperature are obtained by developing new solution algorithms abased on each of the above kinetic models. / UOIT
183

A mechanistic approach For predicting the effect of various factors on partitioning between free and bound chlorides in concrete

Munshi, Md Abu Sayeed 22 September 2009
The chloride-induced corrosion of reinforcing steel in concrete structures has become a widespread durability problem throughout the world. When concrete structures come in contact with chloride sources, the chloride ions will diffuse through the body of the concrete and ultimately reach the steel. Not all of the chloride ions which penetrate the concrete remain free in the pore solution. Some of the ions become bound to the hydration products in a chemical reaction to form calcium chloroaluminate hydrate (Friedel' salt). It is also well known that only the portion of the chloride ions that remains free is responsible for causing damage to the concrete structures by corroding steel rebar. Thus, the chloride binding capacity of the cementitious matrix plays a major role in controlling chlorides ingress and, consequently, the corrosion of steel reinforcement in concrete. The chloride binding capacity is affected by cement composition, environmental factors, and by the source of the chlorides ( vs. ). To quantify the durability of new and existing structures, a clear understanding of the mechanisms of chloride penetration into the concrete cover is required.<p> Currently, most of the models available in the published literature for calculating free chloride ions in concrete use Ficks law for chloride transport and chloride binding isotherms to account for bound chlorides. Binding isotherms are cement and environment specific. Thus, the existing models cannot be used for all types of cement and variable general environmental exposure conditions such as temperatures, pH levels, and chloride sources. A general mechanistic approach that can overcome those limitations is proposed in this thesis based on the concepts of ion-exchange theory for an accurate determination of chloride ingress in concrete under variable environmental conditions.<p> Some of the model input parameters, such as exchange capacity and the equilibrium constant for the exchange reaction, were not easy to determine directly from experiments and were determined through an inverse modeling procedure. Verification experiments were carried out by varying different environmental parameters and making comparisons with the simulated results using the corresponding parameters.<p> The experimental results showed that the proposed procedure is able to predict the amount of free chlorides in concrete, including predictions of chloride binding as a function of pH, temperature, chloride sources, and the presence of other ions such as carbonate. The proposed model was also used to clarify some unresolved issues such as the effect of chloride sources on binding and the effect of pH on the release of bound chlorides in the presence of carbonation.
184

Lateral exchange of water and nitrogen along a beaver-dammed stream draining a Rocky Mountain valley

Shaw, Erin Lorraine 19 October 2009
Dynamic exchange of water across the stream-riparian zone interface is important in increasing stream water transit time through basins and enhancing redox-sensitive biogeochemical reactions that influence downstream water quality and ecosystem health. Such exchange may be enhanced by beaver dams, which are common throughout low order streams in North America, Europe, and Argentina. Lateral exchanges of water and nitrogen (N) were observed along a beaver dammed, third-order stream draining a 1.3 km2 Canadian Rocky Mountain valley bottom capped in peat. Measurements of hydraulic heads and chloride concentrations from a network of 80 water table wells were used to identify areas of stream water and groundwater mixing in the riparian area, and their spatiotemporal dynamics in summer 2008. Beaver were found to be the greatest factor affecting lateral movement of channel water into the riparian area. Channel water flowed laterally into the riparian area upstream of the dams and back to the channel downstream of the dams. The hyporheic zone expanded by ¡Ü1.5 m in the un-dammed reaches, but upwards of 7.5 m or more when dams were present. High contributions of stream water were found far out in the riparian area where dams were not immediately present within the stream reach, suggesting that upstream dams directed stream water into the riparian area where it travelled down valley before returning to the stream. This suggests that multiple dams create hyporheic flow paths at multiple scales. Potential mass flux calculations show the riparian area immediately downstream of the beaver dam was a source of N and dissolved organic carbon (DOC) to the stream, and a sink along the rest of the reach. Cold spots of N and DOC availability were also found along the beaver-driven flow paths in the riparian area adjacent to the dam. This pattern likely developed due to flushing of nutrients along the beaver driven hyporheic flow vectors. This work enhances our understanding of stream-aquifer exchange and N dynamics in riparian areas, and the effects of beaver on these processes.
185

Evolutionary and Physiological Adaptation of Pseudomonas aeruginosa to Elevated Concentrations of Sodium Chloride

Taha, Mariam 23 November 2011 (has links)
I have investigated the evolutionary response of Pseudomonas aeruginosa to salt (NaCl) stress, and the physiological mechanisms responsible for this adaptation. Populations of P. aeruginosa founded from the same ancestral genotype were selected at three different concentrations of NaCl, low, moderate and high for about 660 generations with four independent replicates for each concentration. Adaptation was measured as the fitness of the evolved populations relative to the ancestor assessed in direct, head-to-head competition experiments conducted in the same environment in which they were selected (direct response) as well as in all alternative environments (correlated response). Results suggest that selection in each salt environment led to adaptation to that environment and a modest degree of specialization that evolved because correlated responses to selection were smaller than direct responses. In order to identify the physiological mechanisms contributing to the populations' adaptation in high NaCl concentration, I chose a sample of evolved lines that showed the strongest evidence for specialization to salt and competed them against the common ancestor in KCl and sucrose. Results suggested that increased Na+ /H+ antiporter activity is probably the primary mechanism behind adaptation to high NaCl concentration, however alternative mechanisms cannot be excluded. Tolerance curves, which measure the performance of a genotype across a gradient of salt concentrations, suggested no change in the high salt group’s ability to tolerate extreme concentrations of NaCl. We conclude that high salt evolved population showed improvements to its ionic/osmotic stress resistance strategies mainly to Na+ efflux strategies but with no changes to salt niche.
186

Exploring the possibility of transforming food crops for salinity tolerance using the TMT gene encoding thiol methyltransferase enzyme

Ali, Arshad January 2010 (has links)
Soil salinity is a serious environmental stress threatening productivity of major crops worldwide. Among the various biotic and abiotic strategies that exist, transgenic technologies provide a promising avenue to reduce yield losses in crops under saline environments. Recently, transgenic technology involving the TMT gene encoding thiol methyltransferase enzyme has been suggested as an effective solution for engineering a chloride detoxification capability into a high value crops to improve tolerance against chloride ion toxicity under saline environments. This proposed mechanism, however, results in the emission of methyl chloride (CH3Cl) from plants, which has deleterious effects on stratospheric ozone. This study was performed to examine the relationship between salt tolerance and chloride volatilizing capacity of transgenic plants containing TMT gene as well as to explore the possibility of generating transgenic rice crop containing TMT gene for salinity tolerance. To achieve these objectives, transgenic tobacco plants containing TMT gene were grown in comparison with wild type tobacco plants under three levels of sodium chloride (NaCl) salinity (0, 100 and 200 mM), three levels of soil water content (40%, 60% and 80% of the field capacity) and their tolerance to NaCl and water stress was studied. Plant growth parameters recorded included plant height, number of leaves, leaf area, stem dry weight, leaf dry weight, root dry weight, plant dry biomass and root/shoot ratio. Similarly, both types of plants were exposed to five levels of NaCl concentrations (0, 50, 100, 150 and 200 mM) and three levels of soil water content (40%, 60% and 80% of the field capacity), and the quantity of CH3Cl emitted was recorded. Significant decrease in plants growth parameters of both types of plants were recorded upon exposure to salinity and water stress. Under 100 mM NaCl, however, transgenic plants showed better tolerance to salinity by suffering less reduction in growth parameters compared to wild type plants. Under 200 mM NaCl, growth of both types of plants was completely inhibited. The interactive effects of salinity and water stress were more pronounced in wild type plants than in transgenic plants. Results also showed that all engineered plants acquired an ability to efficiently transform chloride ion to CH3Cl, and the rate of such transformation was higher under greater NaCl and soil water content compared to lower NaCl concentrations and soil water content. In order to explore the possibility of generating a transgenic food crop using TMT gene, a hypothetical transgenic rice crop was grown over 27 million hectares of the saline coastal areas of south and southeast Asia and the possible emission of CH3Cl from such ecosystem was inferred based on the CH3Cl emission data obtained from transgenic tobacco plants. The estimates showed that the possible CH3Cl emission from such ecosystem would be 219.21 Gg which is equivalent to 5.36 % of the global atmospheric emissions of CH3Cl.
187

Lateral exchange of water and nitrogen along a beaver-dammed stream draining a Rocky Mountain valley

Shaw, Erin Lorraine 19 October 2009 (has links)
Dynamic exchange of water across the stream-riparian zone interface is important in increasing stream water transit time through basins and enhancing redox-sensitive biogeochemical reactions that influence downstream water quality and ecosystem health. Such exchange may be enhanced by beaver dams, which are common throughout low order streams in North America, Europe, and Argentina. Lateral exchanges of water and nitrogen (N) were observed along a beaver dammed, third-order stream draining a 1.3 km2 Canadian Rocky Mountain valley bottom capped in peat. Measurements of hydraulic heads and chloride concentrations from a network of 80 water table wells were used to identify areas of stream water and groundwater mixing in the riparian area, and their spatiotemporal dynamics in summer 2008. Beaver were found to be the greatest factor affecting lateral movement of channel water into the riparian area. Channel water flowed laterally into the riparian area upstream of the dams and back to the channel downstream of the dams. The hyporheic zone expanded by ¡Ü1.5 m in the un-dammed reaches, but upwards of 7.5 m or more when dams were present. High contributions of stream water were found far out in the riparian area where dams were not immediately present within the stream reach, suggesting that upstream dams directed stream water into the riparian area where it travelled down valley before returning to the stream. This suggests that multiple dams create hyporheic flow paths at multiple scales. Potential mass flux calculations show the riparian area immediately downstream of the beaver dam was a source of N and dissolved organic carbon (DOC) to the stream, and a sink along the rest of the reach. Cold spots of N and DOC availability were also found along the beaver-driven flow paths in the riparian area adjacent to the dam. This pattern likely developed due to flushing of nutrients along the beaver driven hyporheic flow vectors. This work enhances our understanding of stream-aquifer exchange and N dynamics in riparian areas, and the effects of beaver on these processes.
188

A mechanistic approach For predicting the effect of various factors on partitioning between free and bound chlorides in concrete

Munshi, Md Abu Sayeed 22 September 2009 (has links)
The chloride-induced corrosion of reinforcing steel in concrete structures has become a widespread durability problem throughout the world. When concrete structures come in contact with chloride sources, the chloride ions will diffuse through the body of the concrete and ultimately reach the steel. Not all of the chloride ions which penetrate the concrete remain free in the pore solution. Some of the ions become bound to the hydration products in a chemical reaction to form calcium chloroaluminate hydrate (Friedel' salt). It is also well known that only the portion of the chloride ions that remains free is responsible for causing damage to the concrete structures by corroding steel rebar. Thus, the chloride binding capacity of the cementitious matrix plays a major role in controlling chlorides ingress and, consequently, the corrosion of steel reinforcement in concrete. The chloride binding capacity is affected by cement composition, environmental factors, and by the source of the chlorides ( vs. ). To quantify the durability of new and existing structures, a clear understanding of the mechanisms of chloride penetration into the concrete cover is required.<p> Currently, most of the models available in the published literature for calculating free chloride ions in concrete use Ficks law for chloride transport and chloride binding isotherms to account for bound chlorides. Binding isotherms are cement and environment specific. Thus, the existing models cannot be used for all types of cement and variable general environmental exposure conditions such as temperatures, pH levels, and chloride sources. A general mechanistic approach that can overcome those limitations is proposed in this thesis based on the concepts of ion-exchange theory for an accurate determination of chloride ingress in concrete under variable environmental conditions.<p> Some of the model input parameters, such as exchange capacity and the equilibrium constant for the exchange reaction, were not easy to determine directly from experiments and were determined through an inverse modeling procedure. Verification experiments were carried out by varying different environmental parameters and making comparisons with the simulated results using the corresponding parameters.<p> The experimental results showed that the proposed procedure is able to predict the amount of free chlorides in concrete, including predictions of chloride binding as a function of pH, temperature, chloride sources, and the presence of other ions such as carbonate. The proposed model was also used to clarify some unresolved issues such as the effect of chloride sources on binding and the effect of pH on the release of bound chlorides in the presence of carbonation.
189

A study of the reactions in the zinc chloride-benzaldehyde-glucose system

Dorcheus, Samuel H. 01 January 1962 (has links)
No description available.
190

Evaluation of Self-Consolidating Concrete for Bridge Structure Applications

Horta, Alen 01 July 2005 (has links)
The goal of this research was to determine whether precast prestressed bridge elements with congested reinforcement could be cast using self-consolidating concrete (SCC) without vibration and yet comply with all parameters of strength, no honeycombing, and void-free surface finish. Eight wall panels and eight BT-72 13-ft long girder sections were fabricated in two precast plants. A qualitative and quantitative evaluation of the surface finish, and homogeneity of the concrete throughout the specimens was performed. Strength, creep, shrinkage and chloride permeability of the SCC field mixes were investigated. Good quality SCC mixes were produced for the walls and the BT-72 girder sections, which completely filled the specimens without the need of internal or external vibration, and resulted in a superior surface finish and a homogenous distribution of the aggregate throughout the section.

Page generated in 0.0266 seconds