• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The selective dechlorination of poly-chlorophenols

Thomas, Maxwell Paul January 2009 (has links)
Liquid phase catalytic hydrodechlorinations can provide a convenient and environmentally friendly method for treating organic chlorinated compounds in waste streams generated during the manufacturing of agrochemicals. During such treatment hydrochloric acid is generated as a by-product, which can be easily neutralized employing a base to yield an inorganic salt. This work describes the results obtained during the liquid phase hydrodechlorination of 2,6-dichlorophenol (2,6-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). The hydrodechlorination of these chlorinated phenolic compounds in a mixture of methanol and water was investigated using supported and unsupported palladium catalysts to yield lower chlorinated phenols or phenol. Various parameters were investigated such as catalyst concentration, ammonium formate concentration, effect of base addition and effect of temperature. During this study two methods of hydrodechlorination were also investigated such as hydride-transfer hydrogenolysis, using ammonium formate, and hydrogenolysis, using dihydrogen. These methods offer a mild treatment in terms of the reaction temperature with temperatures used below 800C. A comparison of the palladium catalyst systems using these methods also showed that Pd/C produced the best results in terms of the hydrodechlorination rate and the selectivity towards phenol. When the ammonium formate method was used, complete hydrodechlorination of both substrates was achieved in 1h of reaction time at a selectivity of 100 percent towards phenol. A comparison of the method using dihydrogen and Pd/C showed that the reaction rate and the selectivity towards phenol during the hydrodechlorination of 2,6-DCP were 87.92 percent and 93.30 percent. Similarly, the reaction rate and selectivity during 2,4,6- TCP hydrodechlorination were 63.77 percent and 70.57 percent. These results were achieved in a reaction time of 3 hours. A high catalyst loading increases the reaction rate at the expense of selectivity, due to the formation of cyclohexanone, formed during further hydrogenation of phenol. The formation of cyclohexanone was limited at high temperatures (ca. 800C) with none detected during the hydrodechlorination of 2,6-DCP and 0.19 percent during the hydrodechlorination of 2,4,6-TCP. Evaluation of the hydrodechlorination parameters showed that the catalytic efficiency of the Pd/C catalysts was inhibited as the reaction proceeded due to the formation of HCl as by-product. A significant increase in the reaction rate was achieved when the reaction was performed in the presence of an inorganic base, which neutralized HCl.
2

An evaluation of chlorine as a disinfectant for potable water supplies in the United States : weighing the human health risks

Monaghan, Pegeen 31 October 1991 (has links)
The removal of microbial populations from potable water has been a practice with great importance towards public health, as it has resulted in the reduction of literally millions of cases of infectious disease. In the United States, pathogenic organisms are most commonly removed from drinking water through the application of chlorine. Ninety-nine per cent of all U.S. potable water treatment facilities that disinfect, rely on chlorine as their sole or primary disinfectant, and over 175,000,000 Americans regularly consume chlorinated water. In 1974, Rook and Bellar et al. published studies which indicated that chlorine reacted with organic matter in water during treatment to produce a wide-range of halogenated by-products. Since that time, numerous analyses have been performed to isolate and identify the by-products of chlorination. Toxicologic and epidemiologic studies have been performed, some of which suggest that the use of chlorine as a disinfectant may be contributing to the incidence of chronic disease in the United States. Because of the concern that the use of chlorine for potable water disinfection may be contributing to chronic disease, Amendments to the Safe Drinking Water Act (SDWA) have been promulgated which strictly regulate disinfectants and disinfection by-products. Future disinfectant and disinfectant by-product regulations (1992) will have a major impact on the purveyors of potable water in the U.S.. Probably the largest challenge U.S. water treatment utilities now face is in the attempt to control for disinfectants and disinfectant by-products while maintaining the microbiological integrity of the water supply. The SDWA Amendments and their supporting regulations will result in major changes in the way water quality parameters are measured, and the way disinfection and treatment strategies are practiced. This thesis looks closely at the role of chlorine as a disinfectant, the by-products arising from chlorine reacting with organic matter, as well as the rationale behind the disinfectant and disinfectant by-product regulations. After examining the chemical, toxicologic and epidemiologic evidence which fueled the new SDWA regulations, available treatment strategies for meeting the new regulations will be detailed and examined. A water treatment strategy which best appears to maximize the reduction of waterborne disease and minimize the risk of chronic disease will then be offered. / Graduation date: 1992
3

Biological and Toxicological Responses Resulting from Dechlorination of a Major Municipal Wastewater Treatment Plant Discharge to the Trinity River

Guinn, Richard J. (Richard Joe) 08 1900 (has links)
Federal regulations such as the Clean Water Act (P.L. 92-500), and its amendments, direct the Environment Protection Agency (EPA) to implement programs to control the releases of conventional pollutants and toxics into the waterways of the United States. The EPA began requiring treatment plants to conduct toxicity tests (biomonitoring) of their effluent discharges. To control toxicity caused by chlorination of wastewater discharges, the EPA also began requiring some treatment facilities to dechlorinate their wastewater before discharging. This research was funded by the EPA to document the changes that occurred in the Trinity River from the dechlorination of the effluent from Ft. Worth's Village Creek municipal wastewater treatment plant. The study occurred over a two year period beginning in August 1990. A wide variety of biological field assessments and toxicological assays were used to measure various responses. Seven river stations, covering approximately twenty river miles, and the treatment plant effluent were assessed. Two of the river stations were upstream from the treatment plant and used as reference sites. The remaining five river stations were downstream from the treatment plant, spread out over seventeen river miles. The study evaluated the impact of chlorination prior to dechlorination, which served as a baseline. Responses determined during dechlorination were compared to the baseline data. An overall improvement in species richness and diversity was seen at those river stations which had previously been adversely impacted by chlorine. Aquatic toxicity tests, such as those required to be used by dischargers, were conducted during this study. Periodic toxicity was observed with these tests in the effluent and river samples after dechlorination was initiated. Those tests, along with in situ toxicity assays, proved to be good predictors of biological community responses.

Page generated in 0.0734 seconds