Spelling suggestions: "subject:"hoc frontal"" "subject:"choc frontal""
1 |
Caractérisation du sous-marinage chez l'occupant de véhicule en choc frontalLuet, Carole 27 September 2013 (has links) (PDF)
Le sous-marinage, apparaissant lorsque la ceinture pelvienne glisse au-dessus des épines iliaques antérosupérieures (E.I.A.S.) du bassin, est la cause principale des lésions abdominales sévères. Ce phénomène, conditionné par l'angle relatif entre la ceinture pelvienne et le bassin, est fortement lié à la cinématique du bassin au cours du choc. Cette dernière dépend des efforts et moments qui y sont appliqués, provenant principalement de la colonne lombaire, des hanches, du contact avec l'assise du siège ainsi que de la ceinture pelvienne. L'objectif est de caractériser le comportement de la population au regard du sousmarinage. Cela passe par l'identification des paramètres individuels influents sur le phénomène et par l'étude de leur distribution sur la population. Pour cela, neuf essais sur sujets humains post-mortem (S.H.P.M.) ont été effectués dans un environnement simplifié. Trois configurations de choc, chacune testée sur trois sujets, ont été définies. Les résultats ont ensuite servi de base pour la validation d'un modèle éléments finis d'être humain. Le modèle a été amélioré de façon globale vis-à-vis des corridors définis par les réponses S.H.P.M. et personnalisé au niveau de la géométrie, de la répartition des masses et du comportement de la colonne lombaire pour correspondre à chacun des neuf sujets. La personnalisation de ces paramètres a permis de reproduire les comportements observés en essais. Enfin, le modèle a été utilisé dans une étude numérique pour approfondir la compréhension de la cinématique du bassin, d'une part, et identifier les paramètres individuels influençant le sous-marinage, d'autre part. La répartition des masses, la raideur de la colonne lombaire et l'orientation initiale du bassin influencent l'apparition du sous-marinage. L'ouverture des ailes iliaques, la position des E.I.A.S par rapport au point H, la profondeur de l'échancrure iliaque et l'épaisseur des tissus entre le bassin et la ceinture jouent aussi un rôle.
|
2 |
Influence de l’âge et du morphotype sur la réponse mécanique du thorax : étude expérimentale in vivo et analyse numérique à l'aide de modèles EF personnalisés du corps humain / Age and morphotype influence on thoracic mechanical response : in vivo experimental study and numerical analysis using personalized human body FE modelsPoulard, David 19 December 2012 (has links)
Cette étude aborde le problème de l’aggravation du risque de fractures de côtes chez les automobilistesâgés en choc frontal. L’analyse de la bibliographie fait ressortir que les moyens actuels d’évaluationdu risque de fractures ne permettent pas de prendre en compte les différences anatomiques et depropriétés mécaniques du thorax observées chez les personnes âgées. Les modèles éléments finis (EF)personnalisés du corps humain offrent un grand potentiel en tant qu’outil avancé d’évaluation durisque de blessures. Toutefois, des données expérimentales sont nécessaires pour valider ces modèlesdans des conditions réalistes. De plus, le choix du niveau de personnalisation et la sensibilité de laréponse du modèle à celle-ci doivent être évaluées.Des expérimentations in vivo menés sur des volontaires ceinturés en choc léger, de différents âges etanthropométries, ont été réalisées. Ces tests ont permis d’étudier l’influence de l’âge et de lacorpulence sur la réponse mécanique du thorax et ont permis l’obtention de corridors nécessaires à lavalidation de modèles EF personnalisés. La géométrie du modèle numérique THUMS a été adaptée àcelle des volontaires et les propriétés mécaniques du thorax ont été modifiées au vu du vieillissementpour effectuer une analyse similaire dans le domaine lésionnel. Les simulations numériques ont mis enévidence un risque accru de fracture de côtes pour certains modèles personnalisés.Cette étude devrait permettre de mieux estimer le risque de blessure pour les automobilistesvulnérables. Elle devrait contribuer ainsi à promouvoir les modèles personnalisés du corps humaincomme outil avancé d’évaluation du risque de blessures. / This study deals with the topic of increased risk of rib fractures among elderly drivers infrontal impact. The analysis of the literature reveals that actual thorax injury assessment tools do nottake into account for the differences in anatomical features and biological material properties observedbetween adults and elderly. Personalized human body finite element (FE) models have great potentialas improved thorax injury assessment tools. However, experimental data are needed to validate thesemodels under real-world conditions. In addition, the choice of the level of personalization of the modeland the sensibility of the model response to this personalization must be assessed to predict thoracicinjury risk.In vivo sled tests were performed on belted volunteers of various anthropometries and age. These testswere used to assess the influence of age and corpulence on thorax mechanical response and allowed toobtain corridor responses needed to validate personalized FE models. The geometry of the FE modelTHUMS was adapted to the volunteers and the thorax material properties were modified consideringaging to carry out a similar analysis in the injurious domain. Numerical simulations highlighted anincreased risk of rib fractures for specific personalized models.This study should help to better estimate the injury risk for car occupants. It should contribute topromote personalized human body models as attractive thorax injury assessment tool ofvulnerable individuals.
|
3 |
Caractérisation du sous-marinage chez l'occupant de véhicule en choc frontal / Investigation of car occupants submarining in frontal impactsLuet, Carole 27 September 2013 (has links)
Le sous-marinage, apparaissant lorsque la ceinture pelvienne glisse au-dessus des épines iliaques antérosupérieures (E.I.A.S.) du bassin, est la cause principale des lésions abdominales sévères. Ce phénomène, conditionné par l’angle relatif entre la ceinture pelvienne et le bassin, est fortement lié à la cinématique du bassin au cours du choc. Cette dernière dépend des efforts et moments qui y sont appliqués, provenant principalement de la colonne lombaire, des hanches, du contact avec l’assise du siège ainsi que de la ceinture pelvienne. L’objectif est de caractériser le comportement de la population au regard du sousmarinage. Cela passe par l’identification des paramètres individuels influents sur le phénomène et par l’étude de leur distribution sur la population. Pour cela, neuf essais sur sujets humains post-mortem (S.H.P.M.) ont été effectués dans un environnement simplifié. Trois configurations de choc, chacune testée sur trois sujets, ont été définies. Les résultats ont ensuite servi de base pour la validation d’un modèle éléments finis d’être humain. Le modèle a été amélioré de façon globale vis-à-vis des corridors définis par les réponses S.H.P.M. et personnalisé au niveau de la géométrie, de la répartition des masses et du comportement de la colonne lombaire pour correspondre à chacun des neuf sujets. La personnalisation de ces paramètres a permis de reproduire les comportements observés en essais. Enfin, le modèle a été utilisé dans une étude numérique pour approfondir la compréhension de la cinématique du bassin, d’une part, et identifier les paramètres individuels influençant le sous-marinage, d’autre part. La répartition des masses, la raideur de la colonne lombaire et l’orientation initiale du bassin influencent l’apparition du sous-marinage. L’ouverture des ailes iliaques, la position des E.I.A.S par rapport au point H, la profondeur de l’échancrure iliaque et l’épaisseur des tissus entre le bassin et la ceinture jouent aussi un rôle. / Submarining occurs in frontal crashes when the lap belt slides over the anterior superior iliac spine (ASIS) and is the principal cause of AIS 3+ abdominal injuries. Submarining is the consequence of the pelvis kinematics relative to the lap belt, driven by the equilibrium of forces and moments applied to the pelvis. The four main components playing a role in the pelvis kinematics are the lumbar spine, the hips, the seat pan and the lap belt. The purpose is to characterize the population behavior regarding submarining. This requires to identify individual parameters having an effect on submarining and to examine their distribution among the population. A nine post-mortem human subject (PMHS) sled test campaign was carried out on a simplified environment. Three test configurations were defined. Each configuration was realized on three PMHS. The test results were used as reference data for a human finite element model validation. The model was improved to better fit the PMHS corridor responses and then personalized regarding the geometry, the mass distribution and the lumbar spine behavior to obtain nine models matching each PMHS. The personalized models responses were consistent with the PMHS ones. Finally, the human model was used in a numerical study. The numerical study was aimed at deepen the understanding of the pelvis kinematics on the one hand, and investigate the influence of several individual parameters on submarining on the other hand. The mass distribution, the lumbar spine stiffness and the initial pelvis orientation have revealed an influence on the submarining observation. The iliac wing angle, the position of the ASIS relative to the H-point, the iliac notch depth and the thickness of the soft tissues between the pelvis and the lap belt were also identified to have an effect on submarining.
|
4 |
Métamodèles adaptatifs pour l'optimisation fiable multi-prestations de la masse de véhicules / Adaptive surrogate models for the reliable lightweight design of automotive body structuresMoustapha, Maliki 27 January 2016 (has links)
Cette thèse s’inscrit dans le cadre des travaux menés par PSA Peugeot Citroën pour l’allègement de ses véhicules. Les optimisations masse multi-prestations réalisées sur le périmètre de la structure contribuent directement à cette démarche en recherchant une allocation d’épaisseurs de tôles à masse minimale qui respectent des spécifications physiques relatives à différentes prestations (choc, vibro-acoustique, etc.). Ces spécifications sont généralement évaluées à travers des modèles numériques à très haute-fidélité qui présentent des temps de restitution particulièrement élevés. Le recours à des fonctions de substitution, connues sous le nom de métamodèles, reste alors la seule alternative pour mener une étude d’optimisation tout en respectant les délais projet. Cependant la prestation qui nous intéresse, à savoir le choc frontal, présente quelques particularités (grande dimensionnalité, fortes non-linéarités, dispersions physique et numérique) qui rendent sa métamodélisation difficile.L’objectif de la thèse est alors de proposer une approche d’optimisation basée sur des métamodèles adaptatifs afin de dégager de nouveaux gains de masse. Cela passe par la prise en compte du choc frontal dont le caractère chaotique est exacerbé par la présence d’incertitudes. Nous proposons ainsi une méthode d’optimisation fiabiliste avec l’introduction de quantiles comme mesure de conservatisme. L’approche est basée sur des modèles de krigeage avec enrichissement adaptatif afin de réduire au mieux le nombre d’appels aux modèles éléments finis. Une application sur un véhicule complet permet de valider la méthode. / One of the most challenging tasks in modern engineering is that of keeping the cost of manufactured goods small. With the advent of computational design, prototyping for instance, a major source of expenses, is reduced to its bare essentials. In fact, through the use of high-fidelity models, engineers can predict the behaviors of the systems they design quite faithfully. To be fully realistic, such models must embed uncertainties that may affect the physical properties or operating conditions of the system. This PhD thesis deals with the constrained optimization of structures under uncertainties in the context of automotive design. The constraints are assessed through expensive finite element models. For practical purposes, such models are conveniently substituted by so-called surrogate models which stand as cheap and easy-to-evaluate proxies. In this PhD thesis, Gaussian process modeling and support vector machines are considered. Upon reviewing state-of-the-art techniques for optimization under uncertainties, we propose a novel formulation for reliability-based design optimization which relies on quantiles. The formal equivalence of this formulation with the traditional ones is proved. This approach is then coupled to surrogate modeling. Kriging is considered thanks to its built-in error estimate which makes it convenient to adaptive sampling strategies. Such an approach allows us to reduce the computational budget by running the true model only in regions that are of interest to optimization. We therefore propose a two-stage enrichment scheme. The first stage is aimed at globally reducing the Kriging epistemic uncertainty in the vicinity of the limit-state surface. The second one is performed within iterations of optimization so as to locally improve the quantile accuracy. The efficiency of this approach is demonstrated through comparison with benchmark results. An industrial application featuring a car under frontal impact is considered. The crash behavior of a car is indeed particularly affected by uncertainties. The proposed approach therefore allows us to find a reliable solution within a reduced number of calls to the true finite element model. For the extreme case where uncertainties trigger various crash scenarios of the car, it is proposed to rely on support vector machines for classification so as to predict the possible scenarios before metamodeling each of them separately.
|
Page generated in 0.0442 seconds