Spelling suggestions: "subject:"choroid - diseases"" "subject:"choroid - iseases""
1 |
Up-regulation of alpha-enolase (ENO1) by HIF-1α in retinal pigment epithelial cells after hypoxic challenge is not involved in the regulation of VEGF secretionZheng, Feihui, 郑斐晖 January 2014 (has links)
Choroidal neovascularization (CNV) is a leading threat to severe vision loss, particularly in patients with age-related macular degeneration (AMD). In CNV, newly formed blood vessels sprout from the choroid to the sub-retinal space, where leakage and bleeding of the abnormal vessels lead to photoreceptor death and subsequent vision loss. It is believed that CNV is mediated by growth factors (e.g. vascular endothelial growth factor {VEGF}) produced by the retinal pigment epithelium (RPE) under pathological states (e.g. hypoxia). Current treatments for CNV aiming at countering VEGF only help decrease leakage and inhibit formation of CNV, but none of them is curative and the recurrence rate remains high. In order to find other more powerful potential therapeutic targets, the regulations of VEGF signaling in the pathophysiology of CNV is the focus of numerous translational investigations.
Previously, Hypoxia-inducible factor-1 (HIF-1), a crucial transcriptional factor in response to hypoxia, is identified as the master transcriptional factor controlling VEGF expression in the RPE promoting CNV. Alpha-enolase (ENO1), a key glycolytic enzyme, is known to be over expressed in several types of carcinomas also under the regulation of HIF-1. ENO1 has been reported to be closely associated with cancer progression, angiogenesis, and venous invasion. The molecular events of ENO1 in the pathogenesis of promoting angiogenesis are of interest but still barely understood. Recently, the association of ENO1 antibodies with retina has been seen in patients with AMD. We hypothesize that ENO1 expression in the RPE may play a role in the development of CNV, participating in the regulation of VEGF.
Hypoxia is an important pathological condition in the formation of CNV. Here, we first determined ENO1 expression and cell death in a human RPE cell line, ARPE-19, under cobalt (II) chloride (CoCl2)-induced hypoxia or anoxia (95% N2, 5% CO2). To further investigate the regulation of ENO1 in CNV, HIF-1α-diminished RPE cells were generated using small interfering RNA (siRNA) and the change of ENO1 expression in response to hypoxic injury was determined. Upon 24 hr of treatment with CoCl2-induced hypoxia or anoxia, the expression of ENO1 and VEGF increased significantly along with HIF-1α in ARPE-19 cells, both of which could in turn be significantly down-regulated by HIF-1α siRNA. Interestingly, cell death remained low in ARPE-19 cells, even after 24 hr of CoCl2-induced hypoxia or anoxia.
To further study the role of ENO1 in CNV, we started by investigating the relationship between ENO1 and VEGF. SiRNA was used to knock down the expression of ENO1 in ARPE-19 cells. Upon transfection with the siRNA, ENO1 expression was successfully down-regulated when treated with CoCl2-induced hypoxia. However, VEGF secretions from the ENO1-diminished ARPE-19 cells under CoCl2-induced hypoxia remained unchanged. Double knockdown of ENO1 together with HIF-1α by siRNA also did not help to further suppress VEGF secretion in the hypoxic ARPE-19 cells. Hence, ENO1 was demonstrated to be activated and up-regulated by HIF-1 in RPE cells responding to hypoxia, suggesting a potential role of ENO1 in favoring the formation of CNV, but not through influencing VEGF secretion. / published_or_final_version / Ophthalmology / Master / Master of Philosophy
|
2 |
Genetic investigation of age-related macular degeneration and polypoidal choroidal vasculopathy. / CUHK electronic theses & dissertations collectionJanuary 2013 (has links)
Liu, Ke. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 175-198). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
3 |
Responses of retinal pigment epithelial cells to anoxic/hypoxic stressafter hypoxia-inducible factor-1-alpha down-regulationJang, Wai-chi, 張慧芝 January 2009 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy
|
4 |
Mechanistic and therapeutic evaluation of a novel antiantiogenic small moleculeSulaiman, Rania S. 24 May 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Choroidal neovascularization (CNV) is the vision-threatening characteristic of wet
age-related macular degeneration (AMD), a major cause of blindness affecting
almost 2 million elderly Americans. The current approved treatments target the
dominant angiogenic mediator, vascular endothelial growth factor (VEGF).
However, repeated injections of anti-VEGF drugs can cause ocular and systemic
side effects, and about 30% of wet AMD patients are non-responsive. There is
thus an unmet need to develop VEGF-independent antiangiogenic molecules to
complement or combine with existing medications.
I studied SH-11037, a novel homoisoflavonoid with potent and selective
antiangiogenic activity against human retinal endothelial cells. Intravitreal SH-
11037 dose-dependently suppressed angiogenesis in the laser-induced CNV (LCNV)
mouse model. These effects were prominent as early as 7 days post-laser
treatment as measured by a novel ellipsoid quantification method of optical
coherence tomography images in vivo. A supratherapeutic dose of 100 μM SH-
11037 was not associated with signs of murine ocular toxicity, and did not
interfere with pre-existing retinal vasculature or retinal function. SH-11037
synergized with anti-VEGF therapy in vitro and in vivo, suggesting a VEGFindependent
mechanism. By photoaffinity pulldown, I identified soluble epoxide hydrolase (sEH) as an SH-11037-binding target. sEH is a key enzyme in ω-3 and
ω-6 fatty acid metabolism. sEH levels were dramatically upregulated in retinal
sections from L-CNV mice and a specific sEH inhibitor, t-AUCB, significantly
suppressed L-CNV lesion volume. Additionally, SH-11037 inhibited sEH
enzymatic activity in vitro and in vivo in L-CNV mice. Given the role of sEH in the
metabolism of docosahexaenoic acids (DHA), inhibition of sEH using small
molecules like SH-11037 would enhance ocular DHA levels, with beneficial
antiangiogenic and anti-inflammatory effects. SH-11037 is thus a novel sEH
inhibitor, which could make it an alternative or additive therapy to existing anti-
VEGF drugs for treatment of neovascular diseases in the eye and other tissues.
|
Page generated in 0.0307 seconds