• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model of chromium poisoning in the cathode of a solid oxide fuel cell using the lattice Boltzmann method

Kestell, Gayle M. 26 May 2010 (has links)
The metallic interconnect of a solid oxide fuel cell (SOFC) contains chromium in order to protect the metal from the corrosive environment in the fuel cell. Unfortunately, the chromium introduces chemical instability in the cathode as it migrates from the interconnect to the pores in the cathode. A model was developed previously in Asinari et al. [1] and Kasula et al [2] to model the flow of particles in a fuel cell electrode. To learn more about the migration of the chromium, the previous code is modified in this thesis work to include the effects of the chromium. The model uses Kinetic Theory to simulate the fuel cell at a mesoscopic scale. The discretized form of the Lattice Boltzmann equation is modified for enhanced performance and for use on a parallel processing system. With the new model, the migration of the chromium in the cathode and the performance degradation of the fuel cell are predicted. / Master of Science
2

Electrophoretically deposited copper manganese spinel protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells

Sun, Zhihao 23 October 2018 (has links)
Metallic interconnects in intermediate temperature solid oxide fuel cells (IT-SOFC) stacks form Cr2O3 scales on their surface. Such oxide scales can be further oxidized to Cr6+ containing gaseous species that migrate and deposit at the cathode triple phase boundaries, causing significant degradation in the performance of the SOFCs. This phenomenon is termed as ‘Cr-poisoning’. A solution to this problem is the application of coatings on the interconnects that act as a diffusion barrier to Cr migration. Two different Cu/Mn spinel compositions, Cu1.3Mn1.7O4 and CuMn1.8O4, were studied as coating materials. Dense coatings were deposited on both flat plates and meshes by electrophoretic deposition (EPD) followed by subsequent thermo-mechanical or thermal densification steps. At room temperature, Cu1.3Mn1.7O4 coatings were found to have a mixture of CuO and spinel phases, while CuMn1.8O4 coatings were found to have a mixture of Mn3O4 and spinel phases. However, CuMn1.8O4 is a pure spinel phase between 750 °C and 850 °C. After densification processing and high temperature oxidation, a Cr2O3 layer was formed at the coating/alloy interface, which partially reacted with the spinel coatings to form a dense cubic spinel layer of the general composition (Cu,Mn,Cr)3-xO4. In addition, Cr-rich precipitates, formed in the dense layer close to coating/alloy interface. It is believed that these are Cr2O3 precipitates, formed when the solubility of Cr in the spinel phase is reached. Solubility experiments using powders showed that 1 mole of CuMn1.8O4 can effectively getter 1.83 moles of Cr2O3 at 800°C. Electrical conductivity of (Cu,Mn,Cr)3-xO4 was found to be at least two orders of magnitude higher than that of Cr2O3. The coatings acted as an effective Cr getter whose lifetime depends on the oxidation temperature, coating thickness, and the overall porosity in the coating. In-cell electrochemical testing showed that the CuMn1.8O4 coatings on Crofer 22 APU meshes performed significantly better than commercial Cu/Mn spinel coatings. The CuMn1.8O4 coatings gettered Cr effectively for 12 days at 800 ºC, leading to no performance loss of the cell due to Cr-poisoning. Significantly longer lifetime can be achieved at 750 ºC or lower, which is the target operational temperature regime of IT-SOFCs.
3

Investigations of gas/electrode interactions in solid oxide fuel cells using vibrational spectroscopy

Abernathy, Harry Wilson, III 01 April 2008 (has links)
The goal of current solid oxide fuel cell (SOFC) research is to design electrode materials and other system components that permit the fuel cell to be operated in the 400-700ºC range. Cell performance in this lower temperature range is limited by the oxygen reduction process at the SOFC cathode and by multiple contamination processes. The work presented demonstrates that Raman spectroscopy, a form of vibrational spectroscopy, can provide structural and compositional information complementary to that from traditional characterization methods. Initial experiments into the oxygen reduction mechanism on SOFC cathodes were unable to detect surface oxygen species on selected perovksite-based SOFC cathode materials. However, the Raman signal from the cathode surface was able to be enhanced by depositing silver or gold nanoparticles on the cathode, creating the so-called surface-enhanced Raman scattering (SERS) effect. The Raman sample chamber was also used to study two possible electrode contamination processes. First, the deposition of carbon on nickel and copper anodes was observed when exposed to different hydrocarbon fuel gases. Second, the poisoning of an SOFC cathode by chromium-containing vapor (usually generated by stainless steel SOFC system components) was monitored. Overall, Raman spectroscopy was shown to be useful in many areas crucial to the development of practical, cost-effective SOFCs. The techniques developed here could also be applied to other high temperature electrochemical and catalytic systems.
4

Interactions of the Air Electrode with Electrolyte and Interconnect in Solid Oxide Cells

Jin, Tongan 31 August 2011 (has links)
The interactions between different components of solid oxide cells (SOCs) are critical issues for achieving the tens of thousands of hour's goal for long-term performance stability and lifetime. The interactions between the ceramic electrolyte, porous ceramic air electrode, and metallic interconnect materials — including solid state interfacial reactions and vaporization/deposition of some volatile elements — have been investigated in the simulated SOC operating environment. The interactions demonstrate the material degradation mechanisms of the cell components and the effects of different factors such as chemical composition and microstructure of the materials, as well as atmosphere and current load on the air electrode side. In the aspect of materials, this work contributes to the degradation mechanism on the air electrode side and provides practical material design criteria for long-term SOC operation. In this research, an yttria-stabilized zirconia electrolyte (YSZ)/strontium-doped lanthanum manganite electrode (LSM)/AISI 441 stainless steel interconnect tri-layer structure has been fabricated in order to simulate the air electrode working environment of a real cell. The tri-layer samples have been treated in dry/moist air atmospheres at 800°C for up to 500 h. The LSM air electrode shows slight grain growth, but the growth is less in moist atmospheres. The amount of Cr deposition on the LSM surface is slightly more for the samples thermally treated in the moist atmospheres. At the YSZ/LSM interface, La enrichment is significant while Mn depletion occurs. The Cr deposition at the YSZ/LSM interface is observed. The stoichiometry of the air electrode is an important factor for the interactions. The air electrode composition has been varied by changing the x value in (La0.8Sr0.2)xMnO₃ from 0.95 to 1.05 (LSM95, LSM100, and LSM105). The enrichment of La at the YSZ/LSM interface inhibits the Cr deposition. The mechanisms of Cr poisoning and LSM elemental surface segregation are discussed. A 200 mA·cm-2 current load have been applied on the simulated cells. Mn is a key element for Cr deposition under polarization. Excessive Mn in the LSM lessens the formation of La-containing phases at the YSZ/LSM interface and accelerates Cr deposition. Deficient Mn in LSM leads to extensive interfacial reaction with YSZ forming more La-containing phase and inhibiting Cr deposition. / Ph. D.
5

Study of Perovskite Structure Cathode Materials and Protective Coatings on Interconnect for Solid Oxide Fuel Cells

Shen, Fengyu 08 February 2017 (has links)
Solid oxide fuel cells (SOFCs) are promising devices to convert chemical energy to electrical energy due to their high efficiency, fuel flexibility, and low emissions. However, there are still some drawbacks hindering its wide application, such as high operative temperature, electrode degradation, chromium poisoning, oxidization of interconnect, and so on. Cathode plays a major role in determining the electrochemical performance of a single cell. In this dissertation, three perovskite cathode materials, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF), and Sm0.5Sr0.5Co0.2Fe0.8O3 (SSCF), are comparatively studied through half-cells in the temperature range of 600-800 ºC. Sm0.2Ce0.8O1.9 (SDC) block layer on the yttria-stabilized zirconia (YSZ) electrolyte can lead to smaller polarization resistances of the three cathode materials through stopping the reaction between the cathodes and the YSZ electrolyte. SDC is also used as a catalyst to increase the oxygen reduction reaction (ORR) rate in the LSCF cathode. In addition, interconnect is protected by CoxFe1-x oxide and Co3O4/SDC/Co3O4 tri-layer coatings separately. These coatings are demonstrated to be effective in decreasing the area specific resistance (ASR) of the interconnect, inhibiting the Cr diffusion/evaporation, leading higher electrochemical performance of the SSCF-based half-cell. Only 1.54 at% of Cr is detected on the surface of the SSCF cathode with the Co0.8Fe0.2 oxide coated interconnect and no Cr is detected with the Co3O4/SDC/Co3O4 tri-layer coated interconnect. Finally, single cells with LSCF, BSCF, and SSCF as the cathodes are operated in the temperature range of 600-800 °C fueled by natural gas. BSCF has the highest power density of 39 mW cm-2 at 600 °C, 88 mW cm-2 at 650 °C, and 168 mW cm-2 at 700 °C; LSCF has the highest power density of 263 mW cm-2 at 750 °C and 456 mW cm-2 at 800 °C. Activation energies calculated from the cathode ASR are 0.44 eV, 0.38 eV, and 0.52 eV for the LSCF, BSCF, and SSCF cathodes respectively, which means the BSCF cathode is preferred. The stability test shows that the BSCF-based single cell is more stable at lower operative temperature (600 °C) while the LSCF-based single cell is more stable at higher operative temperature (800 °C). / Ph. D.

Page generated in 0.0893 seconds