• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression of tissue transglutaminase in human umbilical vein endothelial cells

Auld, Gillian C. January 1998 (has links)
This study investigated the expression and activity of tissue transglutaminase (tTG) in human umbilical vein endothelial cells (HUVEC) and vessel wall. tTG was located in the SMC and sub-endothelium of normal vessels. Cross-linking activity was also in this area. Vessels with atherosclerotic plaque showed increased staining for tTG and cross-links. Positive staining for tTG was located in the SMC, neointima, macrophages and the fibrous cap. Most cross-linking activity was observed in the fibrous cap, and cross-linking was observed around macrophages and smooth muscle cells. Cross-linking activity was also observed with incorporation of a labelled cross-linking substrate into vessel sections. Free tTG could be extracted from the vessel wall. HUVEC expressed 10 g tTG/mg total protein. tTG was detected in cell lysate and extracellular matrix, but not in the culture supernatant. Thrombin up-regulated tTG expression at both the mRNA and protein level. Optimal up-regulation was at a thrombin concentration of 1 U/ml The up-regulation by thrombin was dependent on thrombin activity, and was mediated through the thrombin receptor, protease-activated receptor 1 (PAR-1). Cross-linking activity was also increased after thrombin treatment, measured with a microtitre plate assay and an in situ assay. The specific activity of tTG increased after thrombin treatment. Thrombin treatment increased the level of tTG in the HUVEC ECM. Treatment of HUVEC with PMA reduced the expression of tTG mRNA, reduced the level of tTG protein, but increased the tTG cross-linking activity compared to untreated cells.
2

A Mechanism for the Metabolic and Inflammatory Alterations Associated with Low-dose Endotoxemia

Chang, Samantha Mee 08 September 2011 (has links)
Lipopolysaccharide (LPS), a Gram-negative endotoxin, has been well-established as the trigger for the effects of sepsis and septic shock through its binding with the innate immune receptor, Toll-like receptor 4 (TLR4). High doses of LPS signal through TLR4 to produce a massive release of pro-inflammatory cytokines including IL-6, TNFα, and other. Additionally, several recent publications have demonstrated severe metabolic alterations after LPS challenge, suppressing lipid oxidation and concurrently up-regulating glucose oxidation. Unfortunately, this switch in metabolism is inefficient for the great energy demands of the host during a systemic microbial infection which can result in vital organ failure. Meanwhile, a novel concept in several chronic disease pathologies also implicates LPS, although at very low doses. The presence of subclinically elevated circulating endotoxin levels has been termed metabolic endotoxemia and is beginning to be investigated in disease pathologies including insulin resistance and type II diabetes, atherosclerosis, cancer metastasis and Parkinson's disease. These disease phenotypes all possess a component of chronic inflammation whose source has not largely been understood, but examining the effects of very low doses of LPS may provide vital information in understanding their etiologies. However, most information on LPS signaling has been obtained using high doses of LPS (10-200ng/ml) while little to no studies have been published regarding the effects of very low doses of LPS (1pg-100pg/ml) on inflammatory and metabolic alterations. Thus, we use in vivo and in vitro models to determine that both IRAK1 and JNK are critical points of crosstalk downstream of TLR4 for the metabolic and inflammatory alterations associated with metabolic endotoxemia. Additionally, we observed significant down-regulation of nuclear receptors responsible for fatty acid metabolism, including PGC1α, PPARα, and PPARγ after very low dose LPS challenge. Further, we observe phenotypic changes in fatty acid oxidation and glucose oxidation, as well as subsequent changes in cytosolic acetyl-CoA levels and acetylation of pro-inflammatory transcription factor ATF2. Overall our studies point to several mechanisms of cross-talk between metabolism and inflammation and offer significant support to the concept of metabolic endotoxemia in the development of chronic disease. / Ph. D.
3

The Role of CBL Family Proteins in Dendritic Cell Development, Homeostasis, and Functional Quiescence

Tong, Haijun 03 1900 (has links)
Les cellules dendritiques sont des cellules du système immunitaire inné qui jouent un rôle important dans la reconnaissance immunitaire contre les agents pathogènes étrangers. Elles peuvent également prévenir les maladies auto-immunes à l'état basal. En raison de l'importance des cellules dendritiques dans la régulation immunitaire, il est important de comprendre comment le développement, l'état d'homéostasie et de quiescence des ces cellules sont contrôlées dans des conditions physiologiques et pathologiques. Cette étude permettra non seulement de mieux comprendre le contrôle de la régulation immunitaire, mais aussi de contribuer au développement de nouvelles approches pour traiter les maladies infectieuses et auto-immunes, ainsi que les cancers. Notre laboratoire a montré que C-CBL et CBL-B, deux membres de la famille CBL des ubiquitine ligases E3, jouent un rôle redondant dans la régulation négative du développement et de l'activation des cellules T et B. En l'absence de CBL dans les cellules T ou B, les souris développent des maladies auto-immunes sévères, indiquant que C-CBL et CBL-B jouent un rôle dans le système auto-immun. Partant de ces observations, nous proposons que CBL-B et C-CBL peuvent également jouer un rôle similaire dans le développement et la fonction des cellules dendritiques. Pour étudier cette possibilité, nous avons généré une souris knockout de Cbl spécifiques aux cellules dendritiques (dKO). Nous avons trouvé que cette mutation provoque une modification de l'homéostasie d'un sous-ensemble des cellules dendritiques (DC), y compris une augmentation marquée des CD8a+ cDCs et une réduction des pDC dans la rate. Cette modification est causée par la prolifération accrue des CD8a+ cDCs. Dans les CD8a+ cDCs mutantes, les voies de signalisation PKB et ERK sont constitutivement activées. Blocage de la signalisation de MTOR par la rapamycine atténue de manière significative l'hyperprolifération des CD8a+ cDCs in vitro et in vivo, indiquant que l'hyperactivation de MTOR est en partie responsable de l'augmentation CD8a+ cDCs. Les protéines CBL contrôlent l'ubiquitination et la dégradation du récepteur FLT3, suggérant que les protéines CBL contrôlent ainsi l'homéostasie de CD8a+ cDCs. Outre ces effets sur le développement des cellules dendritiques, nous avons trouvé que les souris Cbl dKO développent des inflammations sévères du foie et d'autres organes, caractérisées par une infiltration massive de leucocytes et une activation importante des cellules lymphocytes T périphériques. Les souris mutantes produisent des niveaux élevés de cytokines inflammatoires et de chimiokines, telles que le TNF-α, l'IL-6 et le CCL2. Les souris mutantes développent une maladie inflammatoire du foie. L'ensemble de ces observations montrent que les protéines CBL jouent un rôle essentiel dans le maintien de la quiescence immunitaire chez la souris. Puisque les souris dKO Cbl développent principalement une inflammation sévère du foie, il serait intéressant d'étudier si les voies contrôlées par les protéines CBL contribuent également au développement d'une inflammation du foie chez l'homme. / Dendritic cells (DCs) are innate immune cells that play an important role in immune recognition against foreign pathogens. They may also sense self-cues and prevent autoimmune diseases under the steady-state. Given the importance of DCs in immune regulation, it is conceivable that understanding how DCs development, homeostasis and functional quiescence are regulated under physiological and pathological conditions will not only bring insight into our knowledge how immune regulation is controlled but also some new approaches to treat infectious and autoimmune diseases and even cancers. Dr. Gu’s lab previously has shown that C-CBL and CBL-B, two members of the CBL family of E3 ubiquitin ligases, play a redundant negative regulatory role in both T cells and B cells development and activation. In the absence of CBL family of proteins in either T or B cells, mice develop severe autoimmune diseases, indicating that C-CBL and CBL-B restrain immune system against self. Based on these discoveries, we propose that C-CBL and CBL-B may also have a similar regulatory role in DC development and function. To study this possibility, we have generated DC-specific Cbl dKO mice. We have found that the Cbl dKO mutation results in an altered homeostasis of DC subsets, including a marked increase of CD8a+ cDCs and reduction of pDCs in the spleen (SP). This alteration is due to the enhanced proliferation of CD8a+ cDCs rather than the preferential lineage commitment to CD8a+ cDCs. In the mutant CD8a+ cDCs, both the PKB signaling pathway and ERK signaling pathways are constitutively activated. Blockage of MTOR signaling by Rapamycin significantly attenuates the hyperproliferation of CD8a+ cDCs both in vitro and in vivo, indicating that hyperactivation of MTOR is at least one of the reasons leading to CD8a+ cDC expansion. CBL proteins regulate ubiquitination and degradation of FLT3. Based on these results, we conclude that CBL proteins control CD8a+ cDC homeostasis through promoting FLT3 ubiquitination and degradation. In addition to the altered DC development, we have found that Cbl dKO mice develop severe liver and other organ inflammation characterized by massive leukocytes infiltration and profound peripheral T cell activation. Mutant mice produce high levels of inflammatory cytokines and chemokines including TNF-a, IL-6, CCL2, etc. Most strikingly, the mutant mice develop a similar liver inflammatory disease even in the absence of T and B cells. These findings together indicate that CBL proteins play an essential role in the maintenance of immune quiescence in mice. Since Cbl dKO mice mainly develop severe liver inflammation, it will be interesting to study whether the pathways controlled by CBL proteins also contribute to the development of liver inflammation in humans.
4

Efficacy When Using Biosimilar Renflexis (infliximab abda) Compared to Biologic Remicade (infliximab) Indicated for Treatment of Patients Diagnosed with Rheumatoid Arthritis and Spondyloarthritis.

Silversteyn, Laura 29 March 2022 (has links)
No description available.

Page generated in 0.0748 seconds