• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de l'impact d'un bloc rocheux sur un terrain naturel, application à la trajectographie des chutes de blocs

Bourrier, Franck 14 November 2008 (has links) (PDF)
Ce travail de thèse porte sur la caractérisation du rebond d'un bloc sur un terrain naturel dans la perspective d'améliorer les modèles de détermination de l'aléa de chute de blocs. L'impact d'un bloc rocheux sur un sol composé d'éboulis est modélisé par la Méthode des Elements Discrets. La comparaison entre les résultats de simulation et les résultats d'essais à échelle réduite d'impact sur un sol granulaire grossier met en évidence que le modèle numérique développé assure une prédiction pertinente du rebond pour un nombre réduit de paramètres de simulation à calibrer. L'analyse de l'impact à l'aide du modèle numérique montre que l'interaction entre l'impactant et le sol peut être décomposée en trois phases : le transfert énergétique initial du bloc vers le sol, la propagation d'une onde de compression du point d'impact vers l'intérieur du sol et la réflexion de l'onde de compression sur le substratum. L'étude des échanges énergétiques lors de ces trois phases conduit à la définition d'un diagramme d'existence du rebond délimitant les domaines d'arrêt et de rebond de l'impactant et à l'identification de trois régimes d'impact. Le traitement statistique des résultats de simulation par des méthodes statistiques basées sur l'inférence Bayésienne permet également de définir une loi d'impact stochastique. Cette loi est représentative de la variabilité des vitesses du bloc après impact en fonction des paramètres cinématiques incidents et de l'arrangement géométrique des particules du sol au voisinage du point d'impact. Enfin, suite à l'intégration de la loi stochastique d'impact dans le contexte de l'analyse trajectographique, une approche probabiliste globale permettant la caractérisation détaillée de l'aléa de chute de bloc ainsi que l'implantation et le dimensionnement d'ouvrages de protection est proposée.
2

Etude de l’influence des peuplements forestiers de type taillis sur la propagation des blocs rocheux / Improving the integration of coppice forest protection in rockfall model

Toe, David 11 March 2016 (has links)
L'objectif principal de ce travail de thèse est d'améliorer la prise en compte des peuplements de taillis dans les logiciels d'analyse trajectographique.Dans un premier temps, un modèle numérique permettant de créer des peuplements virtuels de taillis à l'échelle du versant a été développé et validé sur la base d'inventaires forestiers réalisés dans des taillis.Deux modèles numériques permettant de simuler des impacts de blocs sur des franc pieds et des cépées ont été également développés en utilisant la Méthode des Éléments Discrets (MED).Ces modèles ont été calibrés par des essais d'impact sur des tiges de hêtre.Ils permettent d'intégrer l'influence du houppier et du système racinaire, de modéliser explicitement le contact entre le bloc et les tiges impactées, et d'intégrer les non-linéarités matérielles (rupture des tiges, délaminage) se développant dans le tronc au cours de l'impact.Ces travaux ont conduit à la construction d'un modèle trajectographique MED permettant de simuler la propagation d'un bloc dans une forêt de taillis à l'échelle du versant. Finalement, le rôle protecteur de différents peuplements de taillis contre l'aléa de chute de bloc a été caractérisé à l'aide de ce modèle. / This research work is dedicated to improve the integration of coppice stands in rockfall analyses.First, a model was built to create virtual coppice stands. This model was validated using field inventories in coppice stands.Two numerical models were developed to simulate impacts of blocks on single trees and coppice stools using the Discrete Elements Method (MED).These models were calibrated using laboratory impact tests on beech stems.They account for the influence of the root system and of the crown on the tree dynamic response, the explicit modeling of the contact between the block and the impacted stem and the non-linearity evolution into the trunk during impact.Finally, a DEM rockfall software was developed to model rockfall propagation in coppice stands.The protective role against rockfall hazard of different coppice stands was characterized with this model.
3

Analyse et dimensionnement d'ouvrages de protection contre les chutes de blocs

Zhang, Yi 11 October 2006 (has links) (PDF)
Le Pare-blocs Structurellement Dissipant (PSD) est un type de galerie pare-blocs innovant. Il se compose d'une dalle en béton armé reposant sur des appuis fusibles métalliques. Contrairement aux galeries pare-blocs traditionnelles, le PSD utilise directement le mouvement de la dalle, et la déformation de la dalle et des appuis, pour dissiper l'énergie d'impact de blocs rocheux. Le but de cette thèse est de contribuer à améliorer l'analyse et le dimensionnement du PSD sous les impacts rocheux. L'analyse structurelle du PSD nécessite des analyses d'impact appropriées. Un algorithme d'impact est donc développé, qui permet de traiter les impacts unilatéraux entre un projectile rigide et une structure déformable. Cet algorithme est ensuite mis en œuvre dans un code de calculs par éléments finis. Validé par plusieurs tests, ce développement fournit un outil de calcul pour le PSD permettant de prendre en compte les effets de vitesse du comportement des matériaux. Cet outil est utilisé pour modéliser le PSD sous différentes conditions d'impact. D'abord, les essais d'impact sur une maquette PSD à l'échelle 1/3 sont modélisés pour connaître la faisabilité de la modélisation structurelle. Une corrélation satisfaisante entre les résultats numériques et expérimentaux permet de réaliser plusieurs séries d'études paramétriques avec le même modèle aux éléments finis pour mettre en évidence l'influence de la masse et de la vitesse des blocs rocheux, de la position de point d'impact sur la dalle, de l'épaisseur de la dalle, du type de béton et du pourcentage d'armatures de la dalle. Enfin, des calculs à l'échelle de la structure sont effectués. Toutes ces études montrent la robustesse du concept PSD, ainsi que ses optimisations possibles, particulièrement pour améliorer sa résistance vis-à-vis du poinçonnement.
4

Modélisation en champ proche de l’interaction entre sol et bloc rocheux / Local field modeling of interaction between a soil body and a falling boulder

Zhang, Lingran 08 December 2015 (has links)
La prédiction de trajectoire de bloc et la conception de structures de protection sont deux des questions principales de l'ingénierie des chutes de pierres. La prédiction de la trajectoire d'un bloc dépend en grande partie des rebonds de ce bloc tandis que la conception de structures de protection, comme des remblais, est étroitement liée à la force d'impact sur le bloc.En se basant sur ce contexte, la thèse traite aussi bien de l'interaction entre un bloc et un milieu granulaire que des rebonds d'un bloc sur un milieu granulaire, en utilisant une modélisation numérique par la méthode des éléments discrets. L'objectif de la thèse est d'identifier et de mesurer les mécanismes qui contrôlent le rebond du bloc et le transfert de charge à l'intérieur du milieu impacté. Le contenu principal comprend trois parties: la modélisation DEM du processus d'impact, le rebond du bloc et le comportement micromécanique du milieu impacté.La loi de contact classique est utilisée pour modéliser le processus d'impact. Elle est mise en œuvre avec une résistance aux roulements pour considérer les effets de forme des particules et est calibrée par des tests triaxiaux quasi-statiques. Le bloc est modélisé par une sphère avec une vitesse d'incident tandis que le milieu est modélisé par un assemblage de particules sphériques poly-dispersées. La modélisation numérique de l'impact est validé en termes de force d'impact, de durée d'impact et de profondeur de pénétration par des expériences de la littérature.Le rebond du bloc et le processus de propagation d'énergie à l'intérieur du milieu impacté sont examinés ensemble. La résistance du milieu pendant l'impact est représentée par l'énergie de tension élastique. La résistance du milieu n'est pas constante car l'augmentation d'énergie de tension élastique est suivie par l'augmentation d'énergie cinétique, la dissipation d'énergie et par la diminution du nombre de coordination. L'occurrence du rebond du bloc obtenue avec des simulations 3D montre que trois régimes d'impact existent, ce qui est en accord avec les résultats de citet{Bourrier_2008}. De plus, la comparaison entre les diagrammes d'occurrence de rebond 2D et 3D montre que les positions et les formes des diagrammes d'occurrence de rebond changent en raison de résistances et de dissipations d'énergie différentes. En se basant sur les deux aspects de l'étude, la relation entre le rebond du bloc et la propagation d'énergie à l'intérieur du milieu est discutée.Le comportement micromécanique du système impacté est examiné en se focalisant sur les mécanismes des chaînes de force. Le réseau de chaînes de force dans le milieu impacté est caractérisé à partir des tensions entre les particules. L'objectif est d'identifier le rôle des chaînes de force dans la force d'impact sur le bloc et dans la microstructure du milieu. En étudiant la force d'impact sur le bloc avec des impacts sur des échantillons de grains de tailles différentes montre que l'échantillon composé de grands grains a une plus grande force d'impact, des chaînes de force plus longues comparées à l'épaisseur du milieu ainsi qu'un grand pourcentage de chaînes de force avec une longue durée de vie. De plus, l'étude de la distribution spatiale et temporelle des chaînes de force montre que la résistance du milieu pendant l'impact est portée par les particules des chaînes situées entre le bloc et la base du milieu impacté et que la propagation des chaînes de force dans la direction latérale joue un rôle secondaire. Enfin, l'étude des mécanismes du flambage des chaînes de force indique que, provoqués par les mouvements entre les particules de la chaîne, l'augmentation de nombre de flambages est liée à la diminution de la force d'impact sur le bloc ainsi qu'à l'augmentation de l'énergie cinétique et de la dissipation d'énergie à l'intérieur du milieu. / The prediction of boulder trajectory and the design of protection structures are particularly two main interests of rockfall engineering. The prediction of boulder trajectory largely depends on the bouncing of the boulder, and the design of protection structures, such as embankments, are closely related to the impact force on the boulder.Based on this background, the thesis deals with the interaction between a boulder and a granular medium as well as the bouncing of a boulder on a granular medium, through numerical modelling based on discrete element method. The objective of the thesis is to identify and quantify the mechanisms that governs the bouncing of boulder and the load transfer inside the impacted medium. The main contents include three parts: DEM modelling of the impact process, global bouncing of the boulder and micromechanical behaviour of the impacted medium.The classical contact law implemented with rolling resistance to consider particle shape effects calibrated based on quasi-static triaxial tests is used to model the dynamic impact process. The boulder is modelled as a single sphere with an incident velocity, the medium is modelled as an assembly composed of poly-disperse spherical particles. The numerical impact modelling is validated in terms of impact force, impact duration, penetration depth by experiments from literature.Bouncing of the boulder is investigated together with the energy propagation process inside the impacted medium. The strength of the medium during impact is represented by elastic strain energy, while the strength of the medium is not persistent since the increase of elastic strain energy is followed by the increase of kinetic energy and energy dissipation, as well as the decrease of the coordination number. Boulder's bouncing occurrence obtained based on 3D simulations shows that three impact regimes exist, which is consistent with the results of citet{Bourrier_2008}. In addition, comparison between 2D and 3D bouncing occurrence diagrams shows that the positions and shapes of bouncing occurrence diagrams shift due to the different strength and energy dissipation properties. Based on the two aspects of investigations, the relation between the bouncing of the boulder and the energy propagation inside the medium is discussed.The micromechanical behaviour of the impacted system is investigated by focusing on force chain mechanisms. The force chain network in the impacted medium is characterized based on particle stress information. The aim is to find the role of force chains in the strength and the microstructure of the medium. Investigations of the impact force on the boulder by impacting samples composed of different grain sizes shows that sample composed of big grains resulting in a larger impact force, longer force chains compared with the medium thickness, and large percentage of long age force chains. In addition, the spatial and temporal distribution of force chains are investigated and the results show that the strength of the medium under impact is built by chain particles located between the boulder and the bottom boundary, and the force chain propagation in the lateral direction of the medium plays a secondary role. Moreover, the investigation of force chain buckling mechanisms indicates that, triggered by the relative movements between the chain particles, the increase of buckling number is related to the decrease of impact force on the boulder as well as the increase of kinetic energy and energy dissipation inside the medium.

Page generated in 0.053 seconds