• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Effects of Brain Injury on Primary Cilia of Glial Cells and Pericytes

Coronel, Marco V. 12 1900 (has links)
Glial cells maintain homeostasis that is essential to neuronal function. Injury to the nervous system leads to the activation and proliferation of glial cells and pericytes, which helps to wall off the damaged region and restore homeostatic conditions. Sonic hedgehog is a mitogen which is implicated in injury-induced proliferation of glial cells and pericytes. The mitogenic effects of sonic hedgehog require primary cilia, but the few reports on glial or pericyte primary cilia do not agree about their abundance and did not address effects of injury on these cilia. Primary cilia are microtubule-based organelles that arise from the centrosome and are retracted before cells divide. Depending on cell type, proteins concentrated in cilia can transduce several mitotic, chemosensory, or mechanosensory stimuli. The present study investigated effects of stab wound injury on the incidence and length of glial and pericyte primary cilia in the area adjacent to the injury core. Astrocytes, polydendrocytes and pericytes were classified by immunohistochemistry based on cell-type markers. In normal adult mice, Arl13b immunoreactive primary cilia were present in a majority of each cell type examined: astrocytes, 98±2%; polydendrocytes, 87±6%; and pericytes, 79±13% (mean ± SEM). Three days post-injury, cilium incidence decreased by 24% in astrocytes (p< 0.008) and 41% in polydendrocytes (p< 0.002), but there was no significant effect in pericytes. Polydendrocytes labeled with the cell cycle marker Ki67 were less likely to have cilia compared to resting, Ki67- polydendrocytes. Considering post-injury rates of proliferation for astrocytes and polydendrocytes, it appears that resorption of cilia due to cell cycle entry may account for much of the loss of cilia in polydendrocytes but was not sufficient to account for the loss of cilia in astrocytes. Under normal conditions, astrocytes rarely divide, and they maintain non-overlapping territories. However, three days after injury, there was a 7-fold increase in the number of paired mirror-image astrocytes (p< 0.018), which are most likely daughter cells from astrocytes that recently divided. Cilia incidence tended to decrease in these pairs compared to single astrocytes (p< 0.057) in injured mice. This is the first systematic investigation of cilia of astrocytes, polydendrocytes, and pericytes in the brain. Moreover, the examination of effects of brain injury on cilia adds to the understanding of injury-induced proliferation in these cells.
32

Roles of Primary Cilia in the Oligodendrocyte Lineage

Subedi, Ashok 12 1900 (has links)
Primary cilia are nonmotile, hair-shaped organelles that extend from the basal body in the centrosome. The present study is the first investigation of this organelle in the oligodendrocyte lineage in vivo. I used immunohistochemical approaches in normal and cilia-deficient mutant mice to study cilia in relation to oligodendrogenesis and myelination. Primary cilia immunoreactive for Arl13b and ACIII were commonly present in NG2+ oligodendrocyte progenitor cells (OPCs), in which cilia-associated pathways control proliferation, differentiation, and migration. The loss of primary cilia is generally associated with enhanced Wnt/β-catenin signaling, and Wnt/β-catenin signaling has been shown to promote myelin gene expression. I examined whether the lack of cilia in the oligodendrocyte lineage is associated with elevated Wnt/β-catenin activity. I found that absence of a primary cilium was associated with with higher levels of TCF3, and with β-galactosidase in Axin2-lacZ Wnt reporter mice. This evidence supports the proposal that cilia loss in oligodendrocytes leads to enhanced Wnt/β-catenin activity, which promotes myelination. Cilia are dependent on the centrosome, which assembles microtubules for the cilium, the cytoskeleton, and the mitotic spindle. Centrosomes are the organizing center for microtubule assembly in OPCs, but this function is decentralized in oligodendrocytes. I found that the intensity of centrosomal pericentrin was reduced in oligodendrocytes relative to OPCs, and γ-tubulin was evident in centrosomes of OPCs but not in mature oligodendrocytes. These decreases in centrosomal proteins might contribute to functional differences between OPCs and oligodendrocytes. The importance of cilia in the oligodendrocyte lineage was examined in Tg737orpk mice, which have a hypomorphic IFT88 mutation resulting in decreased cilia numbers and lengths. These mice showed marked, differential decreases in numbers of oligodendrocytes and myelin, yet little or no change in OPC populations. It appears that sufficient cells were available for maturation, but lineage progression was stalled. There were no evident effects of the mutation on Wnt/β-catenin. Factors that might contribute to the abnormalities in the oligodendrocyte lineage of Tg737orpk mice include decreased cilia-dependent Shh mitogenic signaling and dysregulation in cilia-associated pathways such as Notch and Wnt/β-catenin.
33

Finite-element analysis of inner ear hair bundles: a parameter study of bundle mechanics

Duncan, Robert Keith 29 September 2009 (has links)
Inner ear hair cells have been identified as the sites of mechanoelectrical transduction from a mechanical event (e.g. hearing, motion) to an electrical event (e.g. neural response). Deflection of bundles of hair-like stereocilia extending from these cells has been associated with the transduction process. Stereocilia bundle structure and stiffness controls deflection and thus the fundamental sensitivity of the transduction process. The finite-element method was used along with analytical techniques to characterize individual stereocilium and stereocilia bundle stiffnesses. A three ‘stack’ bundle with a Young’s modulus of 3 GPa (F-actin protein) and Poisson’s ratio of 0.4 (nearly incompressible) resulted in a stiffness of K = 2.1 x 10⁻³ N/m. This value is within the range of experimentally determined stiffmesses. Tip-link and subapical band interconnecting structures each contribute significantly to bundle stiffness and each could act as the gating-spring in transduction models, which propose gating structures as a means of regulating ionic activity and therefore neural activity. Stiffness depends most strongly on individual stereocilium geometry and material description, tip-link orientation and material description, and stereocilia bundle width. Stiffness depends least on stereocilia height variations and subapical bands configuration. Linear analysis was reliable up to deflections of 3.5 um, the upper limit of physical response. Preliminary dynamic response indicates a natural frequency of 382 kHz for the vibration mode resembling physical deformation behavior. Future models should include hexagonal bundle arrangements, transversely isotropic stereocilia material descriptions, and viscoelastic tip-link behavior. / Master of Science

Page generated in 0.1133 seconds