• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluorescence in situ Hybridization of Symbiotic Chemoautotrophic Sulfur-Oxidizing Bacteria of the Sponge, Cinachyra australiensis

Lu, Der-Kang 28 February 2004 (has links)
Symbiosis is commonly present in marine invertebrates. Many corals and sponges have symbiotic algae or bacteria. In the previous studies of the sponge Cinachyra australiensis, 85% of the bacteria associated with the sponge have high similarity (88.65%) with the symbiotic chemoautotrophic sulfur-oxidizing bacteria of the deep-sea hydrothermal vent mussel, Solemya reidi. This study aims to investigate the localization of the chemoautotrophic sulfur-oxidizing bacteria associated with Cinachyra australiensis. The Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) large-subunit genes for autotrophic organisms were amplified by polymerase chain reaction from the sponge samples. The phylogenetic relationship of the RubisCO large subunit genes was analyzed. A total of 26 clones were selected and sequenced. They could be divided into two groups. One (9 clones) belongs to form I type IB (cynobacteria and green algae). The other (17 clones) belongs to form II type IA (chemoautotrophic symbiotic bacteria). The location of the sulfur-oxidizing chemoautotrophic bacteria was shown to be intracellular symbiosis within the mesoglial cells by fluorescence in situ hybridization.

Page generated in 0.0904 seconds