• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 20
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Proposta de nova topologia com número reduzido de chaves para inversor de sete-níveis alimentado por duas fontes de tensão contínua assimétricas não isoladas / Proposal of a novel topology with reduced number of switches for a seven-level inverter supplied by two non isolated assimetric DC voltage sources

Meier, Martin Breus 29 September 2017 (has links)
Os inversores multiníveis podem se beneficiar de filtros de saída reduzidos devido ao menor conteúdo harmônico do sinal sintetizado, dado que suas saídas possuem menores diferenças de tensão durante seu chaveamento. Sua desvantagem é causada pelo elevado número de chaves controladas normalmente necessário para seu funcionamento, e seus circuitos auxiliares. No objetivo de reduzir o número de chaves utilizadas em um inversor de sete níveis, uma nova topologia para um inversor de sete níveis de tensão é apresentada, construída a partir de duas fontes de tensão assimétricas conectadas em série e seis chaves semicondutoras. Este trabalho analisa os princípios de operação desta topologia e a lógica de chaveamento necessária para seu funcionamento. O arranjo proposto não oferece a possibilidade de redução de tensão sobre as chaves, conforme apresentado nas topologias clássicas de inversores com ponto neutro grampeado a diodo ou capacitor e de células em série, mas reduz a quantidade dos componentes necessários para a composição dos sete níveis, sendo possível utilizá-lo em inversores de baixa tensão, devido à seu menor tamanho e complexidade. O estudo apresenta a estrutura resultante em forma de um inversor monofásico por modulação de largura de pulso com disposição das portadoras em oposição de fase, com sete níveis igualmente espaçados, utilizando apenas seis chaves e duas fontes de tensão com alimentação assimétrica, em que a principal fonte tem o dobro da tensão da outra fonte. O funcionamento da topologia é verificado em simulação e implementação de protótipo de 860W. Uma outra versão também é apresentada analiticamente, com melhor grampeamento da tensão, utilizando oito chaves comandadas com uma lógica mais simplificada. Por fim, algumas propostas são sugeridas para a geração dos dois barramentos de tensão necessários. / Multilevel inverters can benefit from reduced output filters due to the lower harmonic content of the synthesized signal, since their outputs have lower voltage differences during their switching. Its disadvantage is caused by the high number of controlled switches and its auxiliary circuits normally required for its operation. In order to reduce the number of switches used in a seven-level inverter, a new topology for a seven level and its auxiliary circuits inverter is presented, constructed from two asymmetrical voltage sources connected in series and six semiconductor switches. This work analyzes the principles of operation of this topology and the switching logic required for its operation. The proposed arrangement does not offer the possibility of voltage reduction on the switches, as presented in the classical inverters topologies with diode or capacitor clamping or the series connected cells, but it reduces the amount of components necessary for the composition of the seven levels, being possible to use it in low voltages inverters, due to its smaller size and complexity. The study presents the resulting structure in the form of a single-phase inverter, using the pulse-width modulation with phase-contrast carriers technique, with seven equally spaced levels, using only six switches and two voltage sources with asymmetrical voltages, in which the main source has double the voltage of the other. The operation of the topology is checked with simulation and an implementation of a 860W prototype. Another version is also presented analytically, with better voltage clamping, using eight keys controlled with a more simplified logic. Finally, some proposals are suggested for the generation of the two necessary voltage rails.
42

Modelling Of Current-Zero Behaviour Of An SF6 Rotating Arc

Ravishankar, B R 04 1900 (has links) (PDF)
No description available.
43

Návrh prezentačního rozváděče nn / Design of presentation electric switchboard for LV

Hlaváč, Jan January 2018 (has links)
This master’s thesis deals with the design of electric switchgear for low voltage, which will serve for presentation purposes. The switchgear is analogy of the modular system MNS 3.0, which includes the latest equipment of ABB Ltd. that is currently available on the market. Switchgears of this type are widely used in industry primarily for controlling motor units. For this reason, in the switchgear there are located motor starters in various performances, as well as distribution modules. In addition, the switchgear has an automatic transfer switch function in case of failure of one of the power supplies. The complete documentation of the switchgear is processed in the professional software EPLAN Electric P8 with use of the 3D software EPLAN Pro Panel for modelling device compartments. The final part of the thesis is the calculation of the maximum cable lengths that a potential customer can connect to the switchgear. In addition, an analysis of the power and control circuits was carried out for voltage drop calculations, as well as the effect of these voltage drops and capacitance of long control cables on the actuation of contactors.
44

Simulace nadproudové spouště jističe / Simulation of circuit-breaker trip unit

Dostál, Lukáš January 2010 (has links)
Securing of electrical devices is important not only to protect against destruction under the effects of electric current, but also for protection of people or animals against electric shock. With increasing of living standards goes hand in hand increasing of the electricity consumption. Therefore In the grid of low voltage, there are increasing short-circuit currents. With improving technology is posed considerable demand on the performance, security and switching capacity of circuit breakers. This thesis is oriented on development of thermal and electromagnetic switch of circuit breaker on which is put a big demand in development of new types of circuit breakers. The thesis is interesting because of comprehensive use of circuits’ breakers since it can be used in AC and DC networks with frequency of 50 Hz and 400 Hz.
45

Klasická i neklasická řešení venkovních rozvoden 123 kV / Conventional and Unconventional Solving of 123 kV Outdoor Switchgears

Petrucha, Lukáš January 2008 (has links)
This graduation theses shows some of possible versions of outdoor switchgears with very high voltage, especially on the level 123 kV both concerning own complement of classic outdoor switchgears with devices as are overvoltages limiter, disconnecting switchgears, circuit breakers, etc., and compact connections. In the introduction of my theses there are explained basic ideas and theories of switchgears and described main devices and equipments which create classic (from equipment setting point of view) outdoor switchgears of very high voltage. Subsequently it describes possible ways of linking-up of these devices in the complex of switchgears themselves according to possible dispositions arranged and busbars systems. The same focus is dedicated to new, non-classic (non-standard solution in terms of devices solution), compact solving of outdoor very high voltage modules either by air isolated or by means of enclosed technology with gas SF6 which represent innovative solving first of all from reduction of built up area point of view which is very important from economic point of view especially during constructions of new switchgears. In the end of my theses there are mentioned also brief evaluations of producers and economics for development and operation of individual technologies. I used for my work materials of companies CEZ, a. s., Siemens, a. s. and Abb, a.s.
46

Beitrag zur thermischen Dimensionierung von Niederspannungs-Schaltgerätekombinationen

Adam, Robert 03 December 2019 (has links)
In der Niederspannungstechnik werden die Anlagen zum Übertragen und Verteilen von Elektroenergie als Niederspannungs-Schaltgerätekombinationen bezeichnet. Die Anlagen sollen ihre Aufgaben möglichst wartungsfrei über einen Zeitraum von mehreren Jahrzehnten erfüllen. Damit ein langzeitstabiler Betrieb der Niederspannungs-Schaltgerätekombinationen möglich ist, müssen die Anlagen mindestens normgerecht thermisch dimensioniert sein. Um die Erwärmung von Niederspannungs-Schaltgerätekombinationen zuverlässig und effizient zu berechnen, wird in dieser Arbeit die Wärmenetzmethode genutzt. In der Wärmenetzmethode werden die Vorgänge der Erwärmung mit Hilfe von Wärmestromquellen, Temperaturquellen, Wärmewiderständen und Wärmekapazitäten nachgebildet. Einen wesentlichen Einfluss auf die Erwärmung einer Schaltgerätekombination haben die in den Wärmequellen der Anlage erzeugten Verlustleistungen. Die dominanten Wärmequellen (Hauptwärmequellen) innerhalb von Niederspannungs-Schaltgerätekombinationen werden in dieser Arbeit untersucht und die Ergebnisse in die Wärmenetzmethode integriert. Mit den Ergebnissen werdenmit Hilfe der Wärmenetzmethode die Erwärmungen verschiedener Betriebsmittel einer Niederspannungs-Schaltgerätekombination berechnet und anhand von Experimenten verifiziert. Die Wärmenetze der einzelnen Betriebsmittel werden zum Gesamt-Wärmenetz einer Niederspannungs-Schaltgerätekombination zusammengeschaltet. Die mit diesem Wärmenetz berechneten Temperaturen werden dann durch Experimente an der Versuchsanlage einer Niederspannungs-Schaltgerätekombination verifiziert. Eine der Hauptwärmequellen in Niederspannungs-Schaltgerätekombinationen sind die ohmschen Leitungsverluste in den Strombahnen der Hauptsammel- und Feldverteilerschienen. Bei Drehstrombelastung werden die hier in den einzelnen Teilleitern erzeugten Verlustleistungen durch die Stromverdrängung aufgrund des Skin- und den überlagerten Proximity-Effekts maßgeblich beeinflusst. Gegenüber einer Gleichstrombelastung unterscheiden sich die Verlustleistungen jedes einzelnen Teilleiters um den Leistungsfaktor k3~. Für Drehstromschienensysteme mit mehreren Teilleitern existieren bisher nur unzureichende Angaben zum Leistungsfaktor k3~ durch den Skin- und den Proximity-Effekt. In dieser Arbeit wurden FEM-Modelle aufgebaut, die Leistungsfaktoren k3~ für unterschiedliche Schienenanordnungen berechnet und anhand experimenteller Untersuchungen verifiziert. Weitere Hauptwärmequellen in Niederspannungs-Schaltgerätekombinationen sind die in den Anlagen eingebauten Betriebsmittel zum Schalten, Trennen und Schützen (z. B. Leistungsschalter, Trennschalter, Trenneinrichtungen, Sicherungen). Neben den Schaltkontakten selbst gehören die thermischen Schutzauslöser und Sicherungen zu den Hauptwärmequellen in den Strombahnen der Schaltgeräte. Um die Erwärmung der Geräte genau zu berechnen, müssen der Aufbau der Strombahnen und die Verteilung der Widerstände bekannt sein. Diese Widerstände können im Allgemeinen nur gemessen werden. Dabei hat sich zum einen gezeigt, dass die gemessenen Widerstände der Schaltkontakte von Kompaktleistungsschaltern auch im selben Gerät stark variieren können. Zum anderen sind die Widerstände der Schaltkontakte so dominant, dass in ihnen bis zu 47 % der gesamten Verlustleistungen eines Kompaktleistungsschalters entstehen können. Bedingt durch die zunehmende kompakte Bauweise der Anlagen erzeugen die Drehstromfelder der Sammelschienen hohe magnetische Feldstärken in umgebenden Metallteilen. In den Gehäusen, Einbauplatten, Wänden, Umhüllungen und Verkleidungen in Niederspannungs-Schaltgerätekombinationen können daher hohe Verlustleistungen entstehen, die maßgeblich die Erwärmung der Anlagen beeinflussen. Rechnerische und experimentelle Untersuchungen haben gezeigt, dass bei typischen Anordnungen von Schienen und Umhüllungen Verlustleistungen entstehen, die bis zu 32,7% der gesamten in der Versuchsanordnung gemessenen Verlustleistungen betragen. Sind die Ergebnisse der untersuchten Wärmequellen in die Wärmenetze der verschiedenen Betriebsmittel von Niederspannungs-Schaltgerätekombinationen integriert, ermöglichen die aufgebauten Wärmenetze die Berechnung von Temperaturen mit geringen Abweichungen (+4,4 K, -3,5 K) verglichen mit gemessenen Temperaturen. Mit den verifizierten und modularisierten Wärmenetzen der Betriebsmittel ist eine Möglichkeit geschaffen, Wärmenetze von Niederspannungs-Schaltgerätekombinationen effizient und wirtschaftlich aufzubauen.:1 Einleitung 1 2 Problemstellung 2 2.1 Stand der Technik / Ausgangssituation 2 2.2 Normen zur Erwärmung 3 2.3 Aufgabenstellung 5 2.4 Aufbau der Versuchsanlage 7 3 Grundlagen der Erwärmungsberechnung 11 3.1 Erzeugte Wärmeleistungen 11 3.2 Wärmeübertragung 17 3.3 Erwärmungsberechnung mit Wärmenetzen 39 4 Grundlagen zur Stromverdrängung 43 4.1 Stromdichteverteilung im Vollzylinder 43 4.2 Stromverdrängung und der Leistungsfaktor k 48 5 Untersuchungen zu den Wärmequellen 54 5.1 Stromwärmeverluste in den elektrischen Leiter von Sammel- und Feldverteilerschienen 57 5.2 Stromwärmeverluste in Schaltgeräten und zugehörigen Betriebsmitteln 90 5.3 Wirbelstrom- und Hystereseverluste in Metallteilen 105 6 Wärmenetze für die Betriebsmittel einer Niederspannungs- Schaltgerätekombination 126 7 Wärmenetz einer Niederspannungs-Schaltgerätekombination 148 8 Zusammenfassung und Ausblick 155 9 Literaturverzeichnis 158 10 Anhang 163 / In low-voltage engineering the systems for transmission and distribution of electric energy are named as low-voltage switchgear and controlgear assemblies. The systems have to perform their functions maintenance free as much as possible for a period of some decades. To achieve a long-time stable operation, the systems have to be designed thermally at least according to standards. In this thesis the thermal network method is used to calculate the heating of low-voltage switchgear and controlgear assemblies reliably and efficiently. The thermal network method simulates the processes of heating by heat sources, temperature sources thermal resistors and thermal capacities. The thermal power losses which are produced in the heat sources of the systems have significant influence on the heating of switchgear and controlgear assemblies. The dominant heat sources (main heat sources) within low-voltage switchgear and controlgear assemblies are researched at this thesis and the results are integrated to the thermal network method. The results are used to calculate the heating of various electrical components of a low-voltage switchgear and controlgear assembly using the thermal network method and verified by means of experiments. The thermal networks of the individual components are interconnected to form the overall thermal network of a low-voltage switchgear and controlgear assembly. The temperatures computed with this thermal network are then verified by experiments at the test setup of a low-voltage switchgear and controlgear assembly. In low-voltage switchgear and controlgear assemblies one of the main heat sources are the ohmic losses in the current paths of the main busbars and the distribution busbars. If the busbars are loaded with a three-phase current, the generated power losses of every individual subconductors are significantly influenced by the current displacement due to the skin effect and the superposed proximity effect. The power losses of each individual subconductor differ by the power factor k3~ compared to a DC load. For three-phase busbar systems with several subconductors there is only insufficient information on the power factor k3~ which takes into account the current displacement by the skin effect and the proximity effect. In this thesis, FEM models were developed to calculate the power factor k3~ for different busbar systems. The results were verified by experimental investigations. The installed electrical devices for switching, isolating and protection (e. g. circuit breakers, disconnectors, devices for disconnecting and fuses) are further main heat sources in low-voltage switchgear and controlgear assemblies. In addition to the main switching contacts themselves, thermal protection trips and the fuses are the main heat sources in the current paths of the switching devices. In order to calculate the heating of the electrical devices properly, the structure of the current paths and the distribution of the electrical resistances have to be known. In general these resistances can only determine by measuring. On one hand, it was found that the measured resistances vary widely even inside the same device. On the other hand, the resistances of the switching contacts are dominating, that up to 47 % of the entire power losses of a molded case circuit breaker can be generated there. Conditioned by the more and more compact design of the switchgears, the three-phase fields of the main busbars causes high magnetic fields at the surrounding metallic components. High power losses can therefore occur in housings, panels, walls, casings and enclosures in low-voltage switchgear and controlgear assemblies, which have a significant influence on the heating of the systems. Computational and experimental investigations have shown that typical arrangements of busbars and enclosures result in power losses of up to 32.7% of the total power losses measured in the test setup. If the results of the investigated heat sources are integrated into the networks of the various equipment of low-voltage switchgear and controlgear assemblies, the thermal networks set up enable the calculation of temperatures with small deviations (+4.4 K, -3.5 K) compared with measured temperatures. The verified and modularised thermal networks of the equipment provide an efficient and economical way of setting up heating networks of low-voltage switchgear and controlgear assemblies.:1 Einleitung 1 2 Problemstellung 2 2.1 Stand der Technik / Ausgangssituation 2 2.2 Normen zur Erwärmung 3 2.3 Aufgabenstellung 5 2.4 Aufbau der Versuchsanlage 7 3 Grundlagen der Erwärmungsberechnung 11 3.1 Erzeugte Wärmeleistungen 11 3.2 Wärmeübertragung 17 3.3 Erwärmungsberechnung mit Wärmenetzen 39 4 Grundlagen zur Stromverdrängung 43 4.1 Stromdichteverteilung im Vollzylinder 43 4.2 Stromverdrängung und der Leistungsfaktor k 48 5 Untersuchungen zu den Wärmequellen 54 5.1 Stromwärmeverluste in den elektrischen Leiter von Sammel- und Feldverteilerschienen 57 5.2 Stromwärmeverluste in Schaltgeräten und zugehörigen Betriebsmitteln 90 5.3 Wirbelstrom- und Hystereseverluste in Metallteilen 105 6 Wärmenetze für die Betriebsmittel einer Niederspannungs- Schaltgerätekombination 126 7 Wärmenetz einer Niederspannungs-Schaltgerätekombination 148 8 Zusammenfassung und Ausblick 155 9 Literaturverzeichnis 158 10 Anhang 163

Page generated in 0.0395 seconds