• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Circuitos hamiltonianos em hipergrafos e densidades de subpermutações / Hamiltonian cycles in hypergraphs and subpermutation densities

Bastos, Antonio Josefran de Oliveira 26 August 2016 (has links)
O estudo do comportamento assintótico de densidades de algumas subestruturas é uma das principais áreas de estudos em combinatória. Na Teoria das Permutações, fixadas permutações ?1 e ?2 e um inteiro n > 0, estamos interessados em estudar o comportamento das densidades de ?1 e ?2 na família de permutações de tamanho n. Assim, existem duas direções naturais que podemos seguir. Na primeira direção, estamos interessados em achar a permutação de tamanho n que maximiza a densidade das permutações ?1 e ?2 simultaneamente. Para n suficientemente grande, explicitamos a densidade máxima que uma família de permutações podem assumir dentre todas as permutações de tamanho n. Na segunda direção, estamos interessados em achar a permutação de tamanho n que minimiza a densidade de ?1 e ?2 simultaneamente. Quando ?1 é a permutação identidade com k elementos e ?2 é a permutação reversa com l elementos, Myers conjecturou que o mínimo é atingido quando tomamos o mínimo dentre as permutações que não possuem a ocorrência de ?1 ou ?2. Mostramos que se restringirmos o espaço de busca somente ao conjunto de permutações em camadas, então a Conjectura de Myers é verdadeira. Por outro lado, na Teoria dos Grafos, o problema de encontrar um circuito Hamiltoniano é um problema NP-completo clássico e está entre os 21 problemas Karp. Dessa forma, uma abordagem comum na literatura para atacar esse problema é encontrar condições que um grafo deve satisfazer e que garantem a existência de um circuito Hamiltoniano em tal grafo. O célebre resultado de Dirac afirma que se um grafo G de ordem n possui grau mínimo pelo menos n/2, então G possui um circuito Hamiltoniano. Seguindo a linha de Dirac, mostramos que, dados inteiros 1 6 l 6 k/2 e ? > 0 existe um inteiro n0 > 0 tal que, se um hipergrafo k-uniforme H de ordem n satisfaz ?k-2(H) > ((4(k - l) - 1)/(4(k - l)2) + ?) (n 2), então H possui um l-circuito Hamiltoniano. / The study of asymptotic behavior of densities of some substructures is one of the main areas in combinatorics. In Permutation Theory, fixed permutations ?1 and ?2 and an integer n > 0, we are interested in the behavior of densities of ?1 and ?2 among the permutations of size n. Thus, there are two natural directions we can follow. In the first direction, we are interested in finding the permutation of size n that maximizes the density of the permutations ?1 and ?2 simultaneously. We explicit the maximum density of a family of permutations between all the permutations of size n. In the second direction, we are interested in finding the permutation of size n that minimizes the density of ?1 and ?2 simultaneously. When ?1 is the identity permutation with l elements and ?2 is the reverse permutation with k elements, Myers conjectured that the minimum is achieved when we take the minimum among the permutations which do not have the occurrence of ?1 or ?2. We show that if we restrict the search space only to set of layered permutations and k > l, then the Myers\' Conjecture is true. On the other hand, in Graph Theory, the problem of finding a Hamiltonian cycle is a NP-complete problem and it is among the 21 Karp problems. Thus, one approach to attack this problem is to find conditions that a graph must meet to ensure the existence of a Hamiltonian cycle on it. The celebrated result of Dirac shows that a graph G of order n that has minimum degree at least n/2 has a Hamiltonian cycle. Following the line of Dirac, we show that give integers 1 6 l 6 k/2 and gamma > 0 there is an integer n0 > 0 such that if a hypergraph k-Uniform H of order n satisfies ?k-2(H) > ((4(k-l)-1)/(4(k-l)2)+?) (n 2), then H has a Hamiltonian l-cycle.
2

Circuitos hamiltonianos em hipergrafos e densidades de subpermutações / Hamiltonian cycles in hypergraphs and subpermutation densities

Antonio Josefran de Oliveira Bastos 26 August 2016 (has links)
O estudo do comportamento assintótico de densidades de algumas subestruturas é uma das principais áreas de estudos em combinatória. Na Teoria das Permutações, fixadas permutações ?1 e ?2 e um inteiro n > 0, estamos interessados em estudar o comportamento das densidades de ?1 e ?2 na família de permutações de tamanho n. Assim, existem duas direções naturais que podemos seguir. Na primeira direção, estamos interessados em achar a permutação de tamanho n que maximiza a densidade das permutações ?1 e ?2 simultaneamente. Para n suficientemente grande, explicitamos a densidade máxima que uma família de permutações podem assumir dentre todas as permutações de tamanho n. Na segunda direção, estamos interessados em achar a permutação de tamanho n que minimiza a densidade de ?1 e ?2 simultaneamente. Quando ?1 é a permutação identidade com k elementos e ?2 é a permutação reversa com l elementos, Myers conjecturou que o mínimo é atingido quando tomamos o mínimo dentre as permutações que não possuem a ocorrência de ?1 ou ?2. Mostramos que se restringirmos o espaço de busca somente ao conjunto de permutações em camadas, então a Conjectura de Myers é verdadeira. Por outro lado, na Teoria dos Grafos, o problema de encontrar um circuito Hamiltoniano é um problema NP-completo clássico e está entre os 21 problemas Karp. Dessa forma, uma abordagem comum na literatura para atacar esse problema é encontrar condições que um grafo deve satisfazer e que garantem a existência de um circuito Hamiltoniano em tal grafo. O célebre resultado de Dirac afirma que se um grafo G de ordem n possui grau mínimo pelo menos n/2, então G possui um circuito Hamiltoniano. Seguindo a linha de Dirac, mostramos que, dados inteiros 1 6 l 6 k/2 e ? > 0 existe um inteiro n0 > 0 tal que, se um hipergrafo k-uniforme H de ordem n satisfaz ?k-2(H) > ((4(k - l) - 1)/(4(k - l)2) + ?) (n 2), então H possui um l-circuito Hamiltoniano. / The study of asymptotic behavior of densities of some substructures is one of the main areas in combinatorics. In Permutation Theory, fixed permutations ?1 and ?2 and an integer n > 0, we are interested in the behavior of densities of ?1 and ?2 among the permutations of size n. Thus, there are two natural directions we can follow. In the first direction, we are interested in finding the permutation of size n that maximizes the density of the permutations ?1 and ?2 simultaneously. We explicit the maximum density of a family of permutations between all the permutations of size n. In the second direction, we are interested in finding the permutation of size n that minimizes the density of ?1 and ?2 simultaneously. When ?1 is the identity permutation with l elements and ?2 is the reverse permutation with k elements, Myers conjectured that the minimum is achieved when we take the minimum among the permutations which do not have the occurrence of ?1 or ?2. We show that if we restrict the search space only to set of layered permutations and k > l, then the Myers\' Conjecture is true. On the other hand, in Graph Theory, the problem of finding a Hamiltonian cycle is a NP-complete problem and it is among the 21 Karp problems. Thus, one approach to attack this problem is to find conditions that a graph must meet to ensure the existence of a Hamiltonian cycle on it. The celebrated result of Dirac shows that a graph G of order n that has minimum degree at least n/2 has a Hamiltonian cycle. Following the line of Dirac, we show that give integers 1 6 l 6 k/2 and gamma > 0 there is an integer n0 > 0 such that if a hypergraph k-Uniform H of order n satisfies ?k-2(H) > ((4(k-l)-1)/(4(k-l)2)+?) (n 2), then H has a Hamiltonian l-cycle.

Page generated in 0.0716 seconds