Spelling suggestions: "subject:"circular rough transform"" "subject:"circular rough ransform""
1 |
SPHEROID DETECTION IN 2D IMAGES USING CIRCULAR HOUGH TRANSFORMChaudhary, Priyanka 01 January 2010 (has links)
Three-dimensional endothelial cell sprouting assay (3D-ECSA) exhibits differentiation of endothelial cells into sprouting structures inside a 3D matrix of collagen I. It is a screening tool to study endothelial cell behavior and identification of angiogenesis inhibitors. The shape and size of an EC spheroid (aggregation of ~ 750 cells) is important with respect to its growth performance in presence of angiogenic stimulators. Apparently, tubules formed on malformed spheroids lack homogeneity in terms of density and length. This requires segregation of well formed spheroids from malformed ones to obtain better performance metrics. We aim to develop and validate an automated imaging software analysis tool, as a part of a High-content High throughput screening (HC-HTS) assay platform, to exploit 3D-ECSA as a differential HTS assay. We present a solution using Circular Hough Transform to detect a nearly perfect spheroid as per its circular shape in a 2D image. This successfully enables us to differentiate and separate good spheroids from the malformed ones using automated test bench.
|
2 |
A Fast and Accurate Iris Localization Technique for Healthcare Security SystemAl-Waisy, Alaa S., Qahwaji, Rami S.R., Ipson, Stanley S., Al-Fahdawi, Shumoos January 2015 (has links)
Yes / In the health care systems, a high security level is
required to protect extremely sensitive patient records. The goal
is to provide a secure access to the right records at the right time
with high patient privacy. As the most accurate biometric system,
the iris recognition can play a significant role in healthcare
applications for accurate patient identification. In this paper, the
corner stone towards building a fast and robust iris recognition
system for healthcare applications is addressed, which is known
as iris localization. Iris localization is an essential step for
efficient iris recognition systems. The presence of extraneous
features such as eyelashes, eyelids, pupil and reflection spots
make the correct iris localization challenging. In this paper, an
efficient and automatic method is presented for the inner and
outer iris boundary localization. The inner pupil boundary is
detected after eliminating specular reflections using a
combination of thresholding and morphological operations.
Then, the outer iris boundary is detected using the modified
Circular Hough transform. An efficient preprocessing procedure
is proposed to enhance the iris boundary by applying 2D
Gaussian filter and Histogram equalization processes. In
addition, the pupil’s parameters (e.g. radius and center
coordinates) are employed to reduce the search time of the
Hough transform by discarding the unnecessary edge points
within the iris region. Finally, a robust and fast eyelids detection
algorithm is developed which employs an anisotropic diffusion
filter with Radon transform to fit the upper and lower eyelids
boundaries. The performance of the proposed method is tested
on two databases: CASIA Version 1.0 and SDUMLA-HMT iris
database. The Experimental results demonstrate the efficiency of
the proposed method. Moreover, a comparative study with other
established methods is also carried out.
|
3 |
Mathematical imaging tools in cancer research : from mitosis analysis to sparse regularisationGrah, Joana Sarah January 2018 (has links)
This dissertation deals with customised image analysis tools in cancer research. In the field of biomedical sciences, mathematical imaging has become crucial in order to account for advancements in technical equipment and data storage by sound mathematical methods that can process and analyse imaging data in an automated way. This thesis contributes to the development of such mathematically sound imaging models in four ways: (i) automated cell segmentation and tracking. In cancer drug development, time-lapse light microscopy experiments are conducted for performance validation. The aim is to monitor behaviour of cells in cultures that have previously been treated with chemotherapy drugs, since atypical duration and outcome of mitosis, the process of cell division, can be an indicator of successfully working drugs. As an imaging modality we focus on phase contrast microscopy, hence avoiding phototoxicity and influence on cell behaviour. As a drawback, the common halo- and shade-off effect impede image analysis. We present a novel workflow uniting both automated mitotic cell detection with the Hough transform and subsequent cell tracking by a tailor-made level-set method in order to obtain statistics on length of mitosis and cell fates. The proposed image analysis pipeline is deployed in a MATLAB software package called MitosisAnalyser. For the detection of mitotic cells we use the circular Hough transform. This concept is investigated further in the framework of image regularisation in the general context of imaging inverse problems, in which circular objects should be enhanced, (ii) exploiting sparsity of first-order derivatives in combination with the linear circular Hough transform operation. Furthermore, (iii) we present a new unified higher-order derivative-type regularisation functional enforcing sparsity of a vector field related to an image to be reconstructed using curl, divergence and shear operators. The model is able to interpolate between well-known regularisers such as total generalised variation and infimal convolution total variation. Finally, (iv) we demonstrate how we can learn sparsity promoting parametrised regularisers via quotient minimisation, which can be motivated by generalised Eigenproblems. Learning approaches have recently become very popular in the field of inverse problems. However, the majority aims at fitting models to favourable training data, whereas we incorporate knowledge about both fit and misfit data. We present results resembling behaviour of well-established derivative-based sparse regularisers, introduce novel families of non-derivative-based regularisers and extend this framework to classification problems.
|
4 |
Machine-vision-based Detection of Paper Roll Core Eccentricity : Fast and Robust On-Line Measurement Using Circular Hough TransformSehlstedt, Erik January 2022 (has links)
The field of computer vision offers tools that allow machines to derive meaningful infor-mation from video and images and consequently make decisions based on visual inputs. In the paper industry, implementation of machine vision (MV) can be used to automate and speed up processes that require visual inspection, particularly certain segments of quality control – one such application being detection and measurement of paper roll core eccentricity. Core eccentricity is a roll build error in which the roll core is offset from the geometric roll center, potentially causing runnability issues. This particular project aims to improve the detection of paper roll core eccentricity at the Mondi Dynäs integrated pulp and paper mill through creation, calibration and evaluation of a machine-vision-based tool for on-line core eccentricity measurement. The tool utilizes the Hough Transform (HT), since HT is a simple yet fast and robust algorithm when it comes to identification of basic shapes such as lines and circles. The proposed solution was evaluated in two ways; firstly by determining at what level of accuracy the measurements could be provided, accounting for how well the solution deals with correction of systematic error caused by environmental factors, and secondly by analyzing how well characteristic roll features could be accurately identified in large sets of data, necessary to consistently perform measurements. The evaluation of the proposed solution showed a 99.9% detection rate for characteristic paper roll features, and a 98.1% detection rate of laser lines used for correction of position and orientation induced error. Assessment of the measurement accuracy following successful detection was on par with the current optical measurement method, and the proposed solution was able to classify distinctive features with a 96.8% accuracy. Lastly, several improvement actions to address faulty detection were identified, and factors to be considered for future installment were highlighted.
|
Page generated in 0.0476 seconds